划重点
01OpenAI创始人Sam Altman表示,推理模型将是OpenAI未来的重点,以推动科学研究和复杂编程等领域的发展。
02他认为无代码工具将有助于初创公司解决短期问题,但长期来看,专注于为技术专家提供工具更为重要。
03Altman指出,开源模型在生态系统中具有重要地位,同时Agent在实现长期任务方面将发挥关键作用。
04然而,他提醒关注者,AI模型的训练成本很高,但复利效应和大规模用户支持将使其不断进步。
05最后,他谈到了AGI(通用人工智能)时刻的到来,认为社会变化将相对较小,但科学进步将不断超越普遍预期。
以上内容由大模型生成,仅供参考
人类智力锁死在了 2021 年。近期,OpenAI CEO Sam Altman 在接受 20VC 的采访时表示,AGI 或许会在 5 年内到来,然而,AGI 到来如此之快也许是基于一个假设:「人类智力已不再发展」2021 年,GPT 的主要训练告一段落。再往后些,ChatGPT 的一夜蹿红,让我们的生活与 AI 的联系变得密不可分。这不仅改变了我们获取信息的方式,更改变了我们解决问题的思路。但与此同时,更多的 AI 也带来了更多的 AI 垃圾内容。
我们在利用人类数据训练 AI 的同时,也在被 AI 反向训练。可以说,人类知识的整体在进行不断的低劣的演化,而不是进行有创造力的演化。如同 Garbage in,Garbage out,如果 AI 的 output 不能好于它的 input,那么 AI 输入的智力则是 AI 有可能达到的天花板。这实际上是「瓦房店化」现象的扩大化。大语言模型本质上归纳了人类的知识,将其统计成了统计规律,并将其转化为概率。而从大模型训练的角度来看,它旨在训练得到知识的中位数,而不是 99 分位或 95 分位,因为它是归纳回中位数的。所以说,AGI 到最后产生了,或许是因为人类本身的智商降低了。此外,Altman 在这次采访中还透露了许多信息,比如在大模型浪潮的席卷之下,AI 初创公司应该寻找怎样的细分市场、当下热门的 Agent 是否只是昙花一现,以及 Scaling Laws 是否会失效等等。在迈向 AGI 的征途上,人类仍然需要探索更多的路径。太长省流版:Altman 强调 OpenAI 将致力于推理模型的进步,认为这一方向对推动科学研究和复杂编程等领域至关重要,并且 o 系列模型将迅速进步。OpenAI 计划为没有技术背景的创始人开发无代码工具,但最初阶段将专注于为技术人员提供工具。随着 OpenAI 模型的快速进步,许多初创公司解决的短期问题会在未来版本的模型中得到解决,因此开发围绕这些短板的产品可能并不长久。Altman 认为开源模型将继续在生态系统中发挥重要作用,并且 AI Agent 的定义是能够执行长期任务并最小化监督的智能体。尽管 AI 模型的训练成本很高,但由于复利效应和大规模用户的支持,Altman 认为投资是值得的。在 Altman 看来,推动创新的关键在于建立支持创新的文化和组织,而不是仅仅复制他人成功的经验。
主持人:大家好,欢迎来到 OpenAI 开发者日。我是 20VC 的 Harry Stebbings,我非常兴奋能够采访 Sam Altman。欢迎你,Sam,感谢你今天与我一起进行这次采访。Sam Altman:感谢你的采访。主持人:现在我们收到了很多观众的问题,所以我想从一个问题开始。当我们展望未来,OpenAI 未来是会有更多像 o 这样的模型,还是会有更多像我们过去可能预期的更大规模模型?如何看待这个问题?Sam Altman:我们希望在各个方面都取得进展,但推理模型这个方向对我们来说尤为重要。我认为推理将解锁我们多年来一直期待实现的许多事情,例如使像这样的模型能够为新的科学研究做出贡献,帮助编写更多复杂的代码。我认为这将极大地推动我们的进步,所以我们应该期待 o 系列模型的快速进步,这对我们来说是具有战略意义的。主持人:另一个我觉得非常重要的话题是,当我们展望 OpenAI 的未来计划时,你如何看待为没有技术背景的创始人开发无代码工具,帮助他们构建和扩展 AI 应用?你怎么看?Sam Altman:这肯定会实现,我认为第一步将是为那些擅长编码的人提供能提高生产力的工具。但最终,我认为我们可以提供高质量的无代码工具。目前已经有一些这样的工具,它们是有意义的,但你不能仅仅通过无代码的方式,构建一个完整的创业公司,这需要一段时间。主持人:OpenAI 会向技术栈的哪个层级进军?如果你花了大量时间调优你的 RAG 系统,这是否是在浪费时间,因为 OpenAI 最终可能会认为我将拥有应用层的这一部分,还是说这不是浪费时间?Sam Altman:我们试图传达的信息是,我们将尽最大努力,并坚信我们的模型将会不断进步。如果你正在创建一家公司来解决当前的一些小缺陷,如果我们做得对,这些缺陷在未来将不再那么重要。另一方面,如果你建立的公司能从模型不断改进中受益,假设今天有人预言 o4 将变得非常强大,能够完成现在看起来几乎不可能的任务,而你对此感到高兴,那么你可能想错了。但至少这是我们努力的方向。如果你认为,在许多领域中,你选择了一个 o1 预览版表现不佳的领域,并创建了一个仅仅能让它勉强工作的修补系统,那么你就是在假设模型的下一次改进不会像我们预期的那样好。这是我们试图告诉创业公司的信息:我们相信我们正在走在一个非常陡峭的改进轨道上,今天模型的现有短板将在未来的版本中得到解决。
AI 初创公司的「活路」在哪里?主持人:如果今天你是一个创始人在构建公司,你会在哪里认为 OpenAI 可能会进来碾压你,而又在哪些地方不会?另外,作为一个投资人,我也在尝试投资那些不会被影响的机会,那么创始人和我作为投资人,应该如何看待这个问题?Sam Altman:通过使用人工智能来构建以前不可能或相当不切实际的产品和服务,将会创造出数万亿美元的新市场市值。我们试图使其更具相关性的一个领域是,我们希望模型变得非常好,这样你就不必费力去让它们做你想要的事。至于建立在这项新技术上的这些令人难以置信的产品和服务,我们认为它们会变得越来越好。在早期,我感到惊讶的是,在 GPT-3.5 时代(这种情况现在已经改变),大约 95% 的初创公司都在押注模型不会变得更好。当时我们已经预见到 GPT-4 的到来,我们认为它将会非常出色,不再有那些问题。如果你只是创建一个工具来解决模型的某个缺陷,这个缺陷将变得越来越不重要。我们经常忘记仅仅几年前模型的表现有多糟糕,尽管时间并不长,但那时确实存在很多问题。因此,当时似乎那些领域非常适合构建一些东西来填补这个空白,而不是创建像伟大的 AI 辅导员或 AI 医疗顾问这样的产品。所以,我当时觉得 95% 的人都在押注模型不会变得更好,只有 5% 的人认为模型会变得更好。我认为这种情况现在已经发生了逆转。人们已经意识到模型改进的速度,并理解了我们计划做的事情。因此,现在这个问题似乎不再那么严重,但那曾是我们非常担心的问题,因为我们看到了那些非常努力工作的人将面临的挑战。主持人:你提到创造数万亿美元的价值。对了,我不确定你是否看到过,杰夫马萨曾在台上说过,每年将创造 9 万亿美元的价值,这将抵消他认为需要的 9 万亿美元资本支出。我很好奇,当你看到这一点时是怎么想的?你是如何思考的?
Sam Altman:我无法精确地评估,我认为如果我们能把这一切做到位,达到几个数量级的改进,就已经足够好了。目前显然会有大量的资本支出,同时也会创造大量的价值。这种情况在每一次重大的技术革命中都会出现,而这显然也是其中的一次。如你所料,明年将是我们迈向下一代系统的重要一年。你提到过可能会出现一个无代码的软件代理。我不知道这需要多久才能实现。但如果我们以此为例,向未来想象一下,考虑一下会发生什么?想一想如果任何人都能简单地描述出他们想要的整套公司软件,这会为世界带来多大的经济价值。显然这离我们还有很长的路要走。但当我们到达这个点并实现它时,想一想它是多么困难和昂贵。现在再想想它所能创造的价值。如果我们能在保持相同价值的前提下,让它变得更加普及且更加便宜,那就真的是非常强大。我认为我们将看到更多类似的例子,就像我之前提到的医疗和教育,这两者对世界的价值是数万亿美元。如果 AI 真正能够推动这一进程,并以一种与以往完全不同的方式进行,我认为数字本身并不是重点。关于是 9 万亿美元还是 1 万亿美元的争论,或者其他任何数字你知道,这需要比我更聪明的人来解决。但从价值创造的角度来看,这才是令人难以置信的。怎么看待开源与 Agent?主持人:开源无疑是一个非常重要的交付方式,你怎么看待开源在 AI 未来中的角色?当问到是否应该开源某些模型或全部模型时,内部讨论通常是怎样的?Sam Altman:开源模型在整个生态系统中显然占有非常重要的位置。现在也确实存在一些非常优秀的开源模型。我认为也有适当的市场为集成服务和 API 提供良好的解决方案。我认为所有这些东西都可以提供,而人们会根据自己的需求选择适合自己的交付方式。所以我们有开源作为一种交付给客户的方式,也是一个传递价值的机制,同时也可以通过 Agent 来交付。主持人:关于 Agent,很多时候人们在定义它时存在一些语义上的混乱。你今天如何定义 Agent?你认为什么是 Agent,什么又不是?