展会信息港展会大全

Redis 之父自曝用 AI 写代码,锐评:LLM 是博学的“傻瓜”,有望取代 99% 的程序员!
来源:互联网   发布日期:2024-01-08 20:14:40   浏览:12930次  

导读:【CSDN 编者按】新年伊始,在各位大佬进行年终总结之时,近日 Redis 之父 antirez 也发布了他今年的第一篇博文:2024 年初,聊聊 LLM 和编程。不同于预想之中的盘点和回顾,这篇文章 antirez 以一位独立开发者的角度,分享了他这一年来对于 AI 的使用感受,...

【CSDN 编者按】新年伊始,在各位大佬进行年终总结之时,近日 Redis 之父 antirez 也发布了他今年的第一篇博文:“2024 年初,聊聊 LLM 和编程”。不同于预想之中的盘点和回顾,这篇文章 antirez 以一位独立开发者的角度,分享了他这一年来对于 AI 的使用感受,并表示:“就我个人而言,我将继续广泛使用LLM。”

者 | antirez,

Redis 作者

翻译 | ChatGPT责编| 郑丽媛

出品 | CSDN(ID:CSDNnews)

2023 年对 AI 而言是特殊的一年,这毫无疑问。首先我声明一下,本文并非是对 LLM(大型语言模型)过去一年的回顾,而是以一位独立程序员的身份聊聊我对 AI 的见证。自 ChatGPT 问世以来,以及后来使用在本地运行的 LLM,我已将这项新技术广泛应用。从个人角度来说,我使用大模型一方面是为了提升编程速度,另一方面也是希望不再浪费精力在不值得努力的编程方面。

例如,我曾花了无数个小时搜索那些奇特却无趣的技术文档、曾被迫学习过于复杂的 API、曾编写过一些几个小时后就被丢弃的程序……这些都是我不想做的事情,尤其现在谷歌搜索引擎也已沦为垃圾信息的海洋,我得费心筛选才能找到一些有用的东西。

与此同时,我在编程方面当然不是新手。我可以在没有任何辅助工具的情况下编写代码,并且也经常这么做。但随着时间的推移,我开始越来越多地用 LLM 来编写高级代码,尤其是在 Python 中,在 C 语言中则较少。在对 LLM 频繁使用的过程中,我逐渐知道了什么情况该使用它们、什么情况使用它们只会拖慢速度。

除此之外,我还了解到,LLM 其实有点像维基百科和 YouTube 上的各种视频课程:对于本身就有意愿、有能力和有纪律的人,有了 LLM 的帮助几乎如虎添翼;而对于那些本就不太上进、拖后腿的人,强大如 LLM 也帮不了他们。因此我担心,至少就现阶段而言,LLM 只会让本就优秀的人变得更优秀。

但是,让我们一步一步来。

Redis 之父自曝用 AI 写代码,锐评:LLM 是博学的“傻瓜”,有望取代 99% 的程序员!

全知全能还是鹦鹉学舌?

在这波机器学习的新潮中,最令人担忧的现象之一是 AI 专家对于 LLM 的认知也较为有限。伟人发明了神经网络,甚至还发明了自动优化神经网络参数的算法,而硬件能训练越来越大的模型,利用对要处理数据的统计知识(先验)以及大量试错来逼近最佳结果,人们发现了比其他方法更有效的架构。但总体而言,神经网络仍然相当不透明。

由于无法解释 LLM 为何会出现某些新功能,许多人推测科学家们会更加谨慎。但另一方面,还有部分人严重低估 LLM,认为它们充其量只是略为先进的马尔可夫链,最多只能重复在训练集中看到的极其有限的变化。不过后来在面对证据时,这种“鹦鹉学舌”的说法几乎被推翻。

与此同时,还有许多热心群众将现实中并不存在的超自然力量也归因于 LLM而实际情况是,LLM 最多只能对自己在训练期间接触过的数据表示空间中进行插值,这早已不是什么新鲜事。另外值得一提的是,LLM 的插值能力也很有限,如果某个 LLM 能够在其接触过的所有代码所限定的空间内连续插值,即使它做不到真正的创新,也能够取代 99% 的程序员了。

好在实际情况并非如此。LLM 确实能编写出自己从未见过的程序,并以一定频率将训练集中出现的不同想法巧妙融合,但这种能力的局限性也很大:每当需要微妙的推理时,LLM 就会惨遭失败。不过话说回来,LLM 仍代表了 AI 诞生至今的最大成就,这没什么好否认的。

愚蠢,但无所不知

有个事实我们需要明确:LLM 最多只能进行最基本的推理,且往往不准确,还经常夹杂着一些不存在事实的幻觉,但它们确实知识渊博。在编程领域以及其他有高质量数据的领域,LLM 就像愚蠢的天才,知道很多事情。

与这样的搭档进行结对编程非常麻烦(对我而言,结对编程这件事本身就很麻烦):它们会有一些荒谬的想法,我们则必须不断地将自己的想法强加于它。当然,如果这个博学的“傻瓜”可以为我们所用,回答我们向它提出的所有问题,那情况就大不相同了。现有的 LLM 可能还无法跨越知识的鸿沟,但如果我们想处理一个不太了解的主题,那 LLM 可以让我们从绝对无知的状态中解脱出来,让我们了解到足够的知识从而独立前行。

在编程领域,也许是二三十年前,人们对 LLM 的能力兴趣并不大。那时,你必须掌握几种编程语言、经典算法和十个基本库。剩下的就得靠自己了,靠自己的智慧、专业知识和设计技能。如果你具备了这些要素,你就是一个熟练的程序员,几乎能做所有的事情。随着时间的推移,我们目睹了框架、编程语言和各类库的爆炸式增长,虽然这种复杂性的爆炸增长往往是完全不必要和不合理的,但事实就是事实。在这种情况下,一个博学的“傻瓜”就是一位宝贵盟友。

我举个例子:我对机器学习的实验至少进行了一年,一直在使用 Keras,后来出于各种原因,我转到了 PyTorch。我已经知道嵌入或残差网络是什么,但我不想一步一步地学习 PyTorch 文档(就像我学习 Keras 时那样,当时还没有 ChatGPT)。而有了 LLM 后,编写使用 Torch 的 Python 代码就变得非常容易了,我只需对我想要组合的模型有清晰的想法,并提出正确的问题即可。

举例说明

我不是在谈论像“嘿,X 类中执行 Y 的方法是什么?”这样的简单问题,这样我可能会同意那些对 LLM 持怀疑态度的人的观点。事实证明,更复杂的模型所能做的事情要精细得多。我可以告诉 GPT4:看,这是我在 PyTorch 中实现的神经网络模型,这是我的批处理数据,我想调整张量的大小,使输出批次的函数与神经网络的输入相匹配,我想用这种特殊的方式来表示事物。你能给我展示进行重塑所需的代码吗?然后,GPT4 编写了代码,而我只需要在 Python CLI 中测试张量是否真的具有我需要的维度,以及数据布局是否正确。

还有一个例子。前段时间,我不得不为某些基于 ESP32 的设备实现一个 BLE 客户端。经过研究后,我发现多平台蓝牙编程绑定或多或少都无法使用。解决方案很简单,使用 MacOS 的本地 API 用 Objective C 编写代码。于是,我不得不同时处理两个问题:学习 Objective C 繁琐的 BLE API,同时还要记起如何在 Objective C 中编程我上一次用 Objective C 写程序是十年前,根本不记得事件循环、内存管理等许多细节。

然而在 LLM 的帮助下,我用极短的时间就写完了代码。最终的代码是这样的,虽然不算美观,但至少能完成任务:

https://github.com/antirez/freakwan/blob/main/osx-bte-cli/SerialBTE.m

代码主要是通过在 ChatGPT 上剪切粘贴我想要做的事情来编写的,由于刚开始我不太了解如何做,最初生成的代码没法正常运行,但我可以让 LLM 向我解释问题所在以及如何解决它。如果没有 ChatGPT,我能做得到吗?当然可以,但这不仅浪费了我的时间,我可能根本也不会去尝试,因为这不值得:编写这样一个对我的项目来说次要的程序,其付出和收益之间的比例并不可观。

最后还有一个例子,与代码编写无关,而是与数据解释有关。当时,我想建立一个用我在网上找到的卷积神经网络的 Python 脚本,但文档相当缺乏。这个网络的优势在于它采用 ONNX 格式,因此我可以轻松提取输入和输出列表以及它们分配名称的列表。我只知道这个卷积神经网络能检测图像中的某些特征,但输入图像的格式和大小及输出的复杂度我都不太了解。

我首先将 ONNX 网络元数据的输出复制粘贴到 ChatGPT 中,并同步了我对该网络的一点了解。然后,ChatGPT 假设输入的组织方式,输出可能是表示图像中与潜在缺陷相对应部分的归一化方框等。经过几分钟的来回讨论后,我得到了一个能进行网络推理的 Python 脚本以及将起始图像转换为适合输入的张量所需的代码等等。

一次性程序

上述类似的例子还有很多,我在这里就不一一赘述了,基本上都是同样的情况和结果。除此之外,我还经常遇到另一类情况:想迅速了解某些可以快速验证的东西。在这种情况下,我就会用 LLM 来加快我对知识的需求。

不过,在不同的情况下,我也会让 LLM 编写所有代码。例如,当我需要编写一个一次性的程序时,比如这个:

https://github.com/antirez/simple-language-model/blob/main/plot.py

我需要可视化一个小型神经网络学习过程中的损失曲线。我向 GPT4 展示了 PyTorch 程序在学习过程中生成的 CSV 文件格式,然后我要求,如果我在命令行中指定了多个 CSV 文件,我就不再需要相同实验的训练和验证损失曲线,而是要比较不同实验的验证损失曲线。以上结果就是 GPT4 生成的结果,总共耗时 30 秒。

同样,我需要一个程序来读取 AirBnB 的 CSV 报告,并按月份和年份进行分组。然后,考虑清洁费用和每次预订的住宿天数,它将统计出一年中不同月份的平均租金价格。这个程序对我来说非常有用,但编写它也非常无聊:没有任何有趣的东西。因此,我从 CSV 文件中截取了一小部分,并在 GPT4 上进行了剪切粘贴,然后给 LLM 写了要解决的问题,其生成的程序一次就成功了,以下,我将展示完整代码:

python

import pandas as pd

pd.set_option('display.max_rows', None)

df = pd.read_csv('listings.csv')

reservations = df[df['Type'] == 'Reservation']

reservations['

Start

Date

'] = pd.to_datetime(reservations['

Start

Date

'])

reservations['

Year

'] = reservations['

Start

Date

'].dt.year

reservations['

Month

'] = reservations['

Start

Date

'].dt.month

reservations['Nightly Rate

'] = (reservations['Amount

'] - reservations['Cleaning Fee

']) / reservations['Nights

']

all_listings = reservations['Listing

'].unique()

all_years = reservations['

Year

'].unique()

all_months = range(1, 13)

index = pd.MultiIndex.from_product([all_listings, all_years, all_months], names=['Listing

', '

Year

', '

Month

'])

all_data = pd.DataFrame(index=index).reset_index()

merged_data = pd.merge(all_data, reservations, on=['Listing

', '

Year

', '

Month

'], how='

left

')

average_nightly_rates = merged_data.groupby(['Listing

', '

Year

', '

Month

'])['Nightly Rate

'].mean().fillna(0)

print(average_nightly_rates)

要准确理解如何对数据进行分组,且这些数据本来就相当分散和无序,需要一些简单的推理:这不是一个 LLM 简单地重复一些它所见过的语言可以解决的问题。GPT4 在训练过程中可能接触过类似程序,但与我所要求的提示条件必定有所不同,但它依旧能写出符合的程序代码。在我看来,这表明 LLM 能在一定程度上对训练集中各种程序描绘的空间内进行插值。

在我看来,编写这种程序只会浪费我的时间,而 LLM 可以为我代劳,这无疑直接加速了我编写代码的能力:我可以专注于真正重要的事情。

当LLM不尽如人意时:系统编程

尽管我在使用 LLM 和编程方面取得了成功,但当我编写 C 语言程序时,我几乎总是把 LLM 仅用作一种更方便的文档形式。我是系统编程专家,在这种情况下,只有当 LLM 能够进行复杂推理时才会对我有用:然而在这种场景中,它们几乎总是失败的。

让我们从这个实验的提示开始:

概述一个漂亮、小巧但可行的 C 语言实现的 Bloom 过滤器的要求。重点考虑哈希函数的重要方面,然后用高质量的 C 语言编写出来。同时考虑到你的示例实现应能存储 100,000 个元素,误报率不超过 5%,添加的元素是以空字符结尾的字符串。

以下是输出:

c

#

include

#

include

#

include

#

include

#

define N 100000

// Number of elements

#

define P 0.05

// False positive probability

#

define M (int)(-(N * log(P)) / (log(2) * log(2)))

// Size of bit array

#

define K (int)(M / N * log(2))

// Number of hash functions

unsigned

char bitArray[M /

8 +

1];

void

setBit

(

int n){

bitArray[n /

8] |=

1 << (n %

8);

}

int

getBit

(

int n){

return bitArray[n /

8] & (

1 << (n %

8));

}

// Basic hash functions (for demonstration purposes)

int

hash1

(

char *str){

int hash =

5381;

int c;

while ((c = *str++))

hash = ((hash <<

5) + hash) + c;

return

abs(hash % M);

}

int

hash2

(

char *str){

unsigned

long hash =

0;

int c;

while ((c = *str++))

hash = c + (hash <<

6) + (hash <<

16) - hash;

return

abs(hash % M);

}

void

add

(

char *str){

setBit(hash1(str));

setBit(hash2(str));

// Add more hash functions if needed

}

int

is_in

(

char *str){

return getBit(hash1(str)) && getBit(hash2(str));

// Check more hash functions if used

}

int

main

(){

char *testStr =

"testString";

add(testStr);

if (is_in(testStr)) {

printf(

"%s is probably in the set.\n", testStr);

}

else {

printf(

"%s is definitely not in the set.\n", testStr);

}

return

0;

}

从生成代码来看,GPT4 的表现不太出色。Bloom 过滤器的应用相当广泛,不是一种太过奇异的数据结构。不过要编写一个像样的 Bloom 过滤器,显然需要更强的抽象能力,例如找到一种有效方法,对同一字符串进行 N 次哈希处理,并确保各哈希值充分不相关。

然而,如果你明确要求 GPT4 修改哈希函数,使其产生 N 个不相关的输出,它提出的解决方案要好得多:

c

unsigned

int

hash

(

const

char* str,

unsigned

int hash_id){

unsigned

int hash =

5381;

int c;

while ((c = *str++)) {

hash = ((hash <<

5) + hash) + c + hash_id;

}

return hash % BF_SIZE;

}

如果是 GPT4 自己提出了这个想法,它可能会以不同的方式编写 Bloom 过滤器,使用单个哈希函数一次设置 K 个 bits。

也就是说,GPT4 能独立完成编写一个合适且更通用的哈希函数的任务,但在编写 Bloom 过滤器这一更大的项目中,它却未能表现出足够的推理能力,而是输出了两个不同但相似的哈希函数这与网络上一篇关于 Bloom 过滤器实现不佳的示例文章相符。

目前,LLM 的推理能力较弱,如果关于提问的信息来源稀缺,加上还掺杂着许多质量低劣的信息来源,输出结果就很容易不尽如人意。然而,这并非个案,我曾多次尝试在算法或系统编程领域使用 LLM,结果都非常糟糕

与此同时,GPT4 能够反汇编它生成的函数(在单独的会话中),并准确理解其目的:

https://chat.openai.com/share/f54b64d7-d19a-4be4-8f10-08553aa812f1

因此,断言 LLM 在系统编程上没有用途肯定是不准确的。

一个有趣且基本在意料之中的现象是,在这些情况下,较小模型和较大模型之间的差异确实很大。下面让我们看看两个本地模型的表现。

例如,Mistral 的 MoE 模型 Mixtral 对同样的问题的回答如下:

c

unsigned

int

hash

(

const

char* str,

unsigned

int hash_id){

unsigned

int hash =

5381;

int c;

while ((c = *str++)) {

hash = ((hash <<

5) + hash) + c;

}

return hash + hash_id;

}

显然,仅在最后添加 hash_id 是一个极其糟糕的解决方案。Mixtral 在很多方面都是一个很好的模型,但对于推理能力本就薄弱的 LLM 而言,目前的规则无疑是:越大越好。

这是我与本地 LLM deepseek 编码器的聊天,由于我没有足够的 RAM 以更高的精度使用该模型,所以量化到了 4 位。然而,由于它有 340 亿个参数,因此在这个问题上的推理能力似乎相当先进:直说将 hash_id 添加到末尾可能会导致分布不均,尤其是当 hash_id 过大或分布不均时,同时建议用位运算将 hash_id 混合进去。

c

unsigned

int

hash

(

const

char* str,

unsigned

int hash_id){

unsigned

int hash =

5381;

int c;

while ((c = *str++)) {

hash = ((hash <<

5) + hash) ^ c + hash_id;

// Using XOR to mix in the hash_id

}

return (hash ^ hash_id);

// Mixing the hash_id one more time at the end

}

这个结果,至少在我的 MacBook M1 Max 上运行得还不错,它还使用了异或来混合求和结果。在这种情况下,我提供了解决问题的线索肯定对模型有所帮助,但是模型确定了问题的真正源头,并提出有效的解决方案上述情况,是任何书籍、文档或谷歌搜索都无法实现的。

不论这是一种插值的原始结果,还是从其他角度来看,不可否认模型确实进行了某种形式的推理,我们找到问题起源和解决方案也正得益于此。所以,无论人们如何看待 LLM,断言它们对程序员没有帮助是一种极为草率的行为。

但与此同时,凭我在过去几个月的经验表明,对于系统编程而言,如果你已经是一名经验丰富的程序员,LLM 几乎永远也提供不了有效的解决方案。举个例子,我目前的项目是 ggufflib,涉及编写一个读写 GGUF 格式文件的库,这是 llama.cpp 加载量化模型的格式。最初,为了了解量化编码是如何工作的,我尝试用 ChatGPT,但后来我决定对 llama.cpp 的代码进行逆向工程:这样更快。

如果 LLM 能为系统程序员提供适当的帮助,那么看到数据编码“struct”声明和解码函数时,就应该能重建数据格式文档。llama.cpp的函数很小,完全符合 GPT4 的要求,但输出结果却完全没用。在这种情况下,我们就只能像过去一样:掏出纸和笔,阅读代码,看看解码器提取的 bits 在哪里注册。

透过外在看本质

我这么说可能很直接,但事实确实如此:当今的大多数编程工作,都是以略有不同的形式重复同样的内容而这,并不需要高水平的推理能力。尽管 LLM 会受到上下文的严重限制,但它们在做这方面确实相当擅长。

这应该引起程序员的思考:编写这类程序是否值得?当然,你会得到报酬,还可能是相当丰厚的报酬,但如果用一个 LLM 就可以完成其中一部分,那么也许五年或十年后,这份工作并不是你的最好归宿。

其次,LLM 到底是真的具备某种推理能力,还只是“鹦鹉学舌”?也许有时候它们看起来会推理,符合符号学家所说的“能指”概念,但实际上这是一种并不存在的意义。那些长期与 LLM 打交道、并深知其限制的人们,对此应该深有感触:它们对以往接触过的内容的融合能力,远远超出了其随机输出单词的能力。尽管 LLM 的大部分训练主要是在预训练期间进行的,但在预测下一个 token 时,大模型还是会根据目标创建某种形式的抽象模型。这个模型可能很脆弱、零散且不完美,但通过实际观察,我们会发现这种能力一定存在。如果我们的数学定理令人怀疑,而最伟大的专家们经常持相反意见,那么对我们来说,“眼见为实”似乎是一种明智的做法。

最后,我想说:事已至此,不使用 LLM 进行编程还有什么意义呢?向 LLM 提出正确的问题已是一项基本技能,这种技能练得越少,AI 对工作的帮助就越校此外,培养对问题的描述能力在与其他人交谈时也很有用,有时并非只有 LLM 不理解我们想说什么。沟通不畅是一个很大的局限,很多程序员尽管在自己的特定领域能力很强,但沟通能力却很差。

目前,谷歌搜索已经乱得不能用了:使用 LLM,哪怕只是把它作为一种压缩的文档形式,也是一个不错的选择。就我个人而言,我将继续广泛使用 LLM,我从来都不喜欢学习晦涩难懂的通信协议细节,也很讨厌那些想展示自己有多么优秀的人编写的库的复杂方法对我来说,这些似乎都是“知识垃圾”,感谢 LLM 每天都在把我从这一切中解救出来。

赞助本站

相关内容
AiLab云推荐
展开

热门栏目HotCates

Copyright © 2010-2025 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港