展会信息港展会大全

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制
来源:互联网   发布日期:2023-08-20 13:57:51   浏览:16331次  

导读:克雷西 发自 凹非寺 量子位 | 公众号 QbitAI MIT的这项新成果,让取物机器人变得更聪明了! 不仅能理解自然语言指令,还可以拾取没见过的物体。 麻麻再也不用担心我找不到东西了! 研究人员将2D特征嵌入了三维空间,构建出了用于控制机器人的特征场(F3RM)...

克雷西 发自 凹非寺

量子位 | 公众号 QbitAI

MIT的这项新成果,让取物机器人变得更聪明了!

不仅能理解自然语言指令,还可以拾取没见过的物体。

麻麻再也不用担心我找不到东西了!

研究人员将2D特征嵌入了三维空间,构建出了用于控制机器人的特征场(F3RM)。

这样一来,在2D图像中构建的图像特征和语义数据,就能被三维的机器人理解并使用了。

不仅操作简单,训练过程中需要的样本量也很校

低训练样本实现轻松取物

我们可以看到,在F3RM的帮助下,机器人可以娴熟地拾取目标物体。

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

哪怕要找出机器人没遇见过的物体,同样不是问题。

比如……大白(玩偶)。

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

对于场景中的同种物品,可以根据颜色等信息进行区别。

比如分别拾取同一场景中蓝色和红色两种不同的螺丝刀。

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

不仅如此,还可以要求机器人抓取物体的特定位置。

比如这个杯子,我们可以指定机器人抓住杯身或者杯把。

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

除了拾取问题,还可以让机器人把拾到的东西放到指定位置。

比如把杯子分别放到木制和透明的支架上。

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

团队提供了完整的,没有经过筛选的实验结果。他们在实验室周边随机选取了 out-of-distribution (训练集外)测试样本。

其中使用 CLIP ResNet 特征的 特征场 在三成以上的测试样本中 (78%)成功抓取和放置。在基于开放性人工语言指令的任务上,成功率在 60%。该结果没有经过人工选择 (cherry-picking),因此对特征场在零微调情境下的表现有客观的描述。

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

那么,如何利用F3RM帮助机器人工作呢?

将2D特征投射到三维空间

下面这张图大致描述了利用F3RM帮助机器人拾取物品工作流程。

F3RM是一个特征场,要想让它发挥作用,首先要得到有关数据。

下图中的前两个环节就是在获取F3RM信息。

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

首先,机器人通过摄像头对场景进行扫描。

扫描过程会得到多个角度的RGB图像,同时得到图像特征。

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

利用NeRF技术,对这些图像做2D密度信息提取,并投射到三维空间。

图像和密度特征的提取使用了如下的算法:

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

这样就得到了这一场景的3D特征场,可供机器人使用。

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

得到特征场之后,机器人还需要知道对不同的物体需要如何操作才能拾龋

这一过程当中,机器人会学习相对应的六个自由度的手臂动作信息。

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

如果遇到陌生场景,则会计算与已知数据的相似度。

然后通过对动作进行优化,使相似度达到最大化,以实现未知环境的操作。

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

自然语言控制的过程与上一步骤十分相似。

首先会根据指令从CLIP数据集中找到特征信息,并在机器的知识库检索相似度最高的DEMO。

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

然后同样是对预测的姿势进行优化,以达到最高的相似度。

优化完毕之后,执行相应的动作就可以把物体拾起来了。

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

经过这样的过程,就得到了低样本量的语言控制取物机器人。

团队简介

研究团队成员全部来自MIT的CSAIL实验室(计算机科学与人工智能实验室)。

该实验室是MIT最大的实验室,2003年由CS和AI两个实验室合并而成。

共同一作是华裔博士生William Shen,和华人博后杨歌,由Phillip Isola 和Leslie Kaelbling监督指导。他们来自于MIT CSAIL(计算机和人工智能实验室)和IAIFI(人工智能和基础相互作用研究院 )。 其中杨歌是2023年CSAIL具身智能研讨会 (Embodied Intelligence Seminar) 的共同筹办人.

MIT推出拾物机器人「最强辅助」,少量训练样本即可实现自然语言控制

左:William Shen,右:杨歌

论文地址:

https://arxiv.org/abs/2308.07931

项目主页:

https://f3rm.github.io

MIT 具身智能 团队

https://ei.csail.mit.edu/people.html

具身智能研讨会

https://www.youtube.com/channel/UCnXGbvgu9071i3koFooncAw

赞助本站

AiLab云推荐
推荐内容
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港