展会信息港展会大全

中国互联网大厂的“ChatGPT”追赶之旅现状
来源:互联网   发布日期:2023-05-04 10:42:45   浏览:7312次  

导读:五一长假前后,我有幸跟一些互联网大厂的朋友深聊,大家有一个话题是绕不开的: ChatGPT,以及由此席卷而起的生成式AI潮流。 A股市场当然早已把一切能攀上GPT概念的公司给炒到天上去了,但是稍有常识的人都承认,中国做生成式AI(无论是模型还是应用)最值得...

五一长假前后,我有幸跟一些互联网大厂的朋友深聊,大家有一个话题是绕不开的:ChatGPT,以及由此席卷而起的“生成式AI”潮流。A股市场当然早已把一切能攀上GPT概念的公司给炒到天上去了,但是稍有常识的人都承认,中国做生成式AI(无论是模型还是应用)最值得仰仗的还是互联网大厂,只有它们拥有足够的资源和决心去做这件事情。不过,互联网大厂的“ChatGPT追赶之旅”的具体进度,很大程度上尚未被外人所知,也尚未反应在财务业绩和资本市场当中。

在跟一些熟悉内情的朋友沟通之后,我感觉比以前更有信心一点了,但也只是“一点”而已。在生成式AI这一赛道,国内互联网大厂固然落后于世界先进水平(其实就是OpenAI),但落后的幅度尚不致命,而且不缺乏追赶的手段。关键的掣肘可能不在于技术层,而在于其他方面。总而言之:

先说第一条。互联网大厂内部做技术的人,无论是基础研发团队还是应用技术团队,对生成式AI的热情都很高。因为在ChatGPT横空出世之前,AI在互联网行业的落地场景(搜索、个性化推荐、自动客服等)已经基本被做到极限,进化空间不大了;而其他突破性技术又没有出现。所以,2021-22年,互联网大厂普遍对算法岗位进行裁员。在这种情况下,ChatGPT的诞生可谓雪中送炭,给了技术人员一个向公司证明自己价值、升职加薪的大好机会。

而互联网大厂的各级老板们也非常乐意配合,因为生成式AI跟此前的元宇宙、Web3.0等概念不同,有着切切实实的应用案例,而且硅谷已经在前面踩出了一条清晰的道路。这就进入了中国互联网行业最擅长的“投入资源模仿追赶”的模式。目前很多互联网大厂的基础研发团队,以及业务部门里面的算法团队,都把原来手头做的东西暂停了,集中力量all-in大模型。现在大模型不仅是公司层面的一号位工程,也成为了诸多事业群、事业部的一号位工程,这就决定了它能得到近乎无穷的资源投入。

接着说第二条。在降本增效的大背景下,互联网大厂目前对生成式AI最大的期望其实不是开辟财源,而是节约成本或为老业务赋能。例如GPT商业化的第一批客户包括Shopify这样的电商SaaS及代运营商,在国内阿里、京东可以把自己的大模型直接用于自身电商平台的代运营;腾讯可以利用大模型补齐自己的客服短板,还能在腾讯文档等应用中加入自动生成文案功能;所有的信息流媒体平台都可以利用生成式AI进行转评赞、活跃社区氛围。上面举出的只是一小批正在进行的案例而已。

至于开发大型C端应用,或者面向广大中小B端开放API,目前看来还比较遥远。除了技术瓶颈之外,监管风险是一个主要考虑点:国内对生成式AI的监管讨论才刚刚开始,尚未形成成熟的监管体系,此时贸然上马大型C端应用的风险极高。然而,这里有牵扯出了一个新的问题:互联网大厂在既有的应用中大规模使用生成式AI,是否也会带来潜在的监管风险?这个话题比较敏感,目前还难以讨论,在此就不展开了。

中国互联网大厂的“ChatGPT”追赶之旅现状

再说第三条。OpenAI不是世界上唯一的生成式AI大模型开发者,GPT的技术路线也不是唯一的。但是,国内互联网大厂的研发思路高度统一,那就是模仿乃至彻底复刻GPT。结果就是一切与OpenAI能够沾边的人才和信息几乎全部被瓜分利用殆尽其中既有合法的利用,也有灰色地带的利用。不计成本的投入,加上国内相对硅谷而言较低的人力成本,是可以在一定程度上拉近差距的。这种模仿路线当然不可能把落后转化为领先,不过目前大家还考虑不到这么远。

第四条也是一个非常重要的因素。我们知道,对于芯片、新能源等“硬科技”产业,国内各级主管部门(包括国家和地方)予以了极大的政策和资源扶持;生成式AI在理论上也属于“硬科技”,如果也能得到类似的扶持,无疑可以大幅度加快发展进度、降低风险。然而,生成式AI有一个严重的软肋:它不是制造业,无法像芯片、新能源、生物医药那样提供较长的产业链、立竿见影地为地方创造GDP。此外,它也尚未被主流媒体认为是一项“卡脖子”技术。在几个月乃至几年之内,生成式AI要成为一项被大力扶持的“硬科技”,还是很有难度的。

当然,互联网大厂可以采取一种话术,即生成式AI具备很强的“乘数效应”或上下游拉动作用,例如可以间接刺激芯片行业的成长,以及促进智慧城市、智慧交通的实现,等等。但是,上述“乘数效应”过于迂回,在短期内又很难看到效果。在可见的未来,主流媒体和主管部门心目中的“硬科技”代表仍将是光刻机而非ChatGPT,互联网大厂必须主要依靠自身资源投入而非政策扶持。

过去多年,中国互联网行业曾一再证明:只要它们下定决心投入足够的资源,并且有庞大的潜在C端应用场景,它们就能够成功模仿乃至超越硅谷的同行。这一发展路线并非百试不爽,不过大部分情况下是成立的。生成式AI是对上述路线的一次大考:在GPT3.5以前版本已经开源,基础研发路线并无秘密可言,潜在应用市场非常广阔,而且国内互联网大厂均已投入足够资源、提起绝对重视的情况下,中国能否在生成式AI这条赛道上迅速缩小差距乃至有朝一日超越?

相信这个问题已经被资本市场提了无数次,也被互联网从业者提了无数次。我的观点偏向悲观一边:由于种种掣肘(在此就不讨论了)、种种天然限制,国内生成式AI最多只能将与硅谷的差距缩小到可以接受的程度,而不可能彻底消除这种差距。不过,我的上述“悲观”观点,在很多人看来或许已经算是乐观了?

事在人为,但在很多时候,形势比人强。

赞助本站

AiLab云推荐
推荐内容
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港