展会信息港展会大全

TVP尖峰对话李开复、沈春华:AI 未来式与技术的发展、价值
来源:互联网   发布日期:2022-05-23 11:15:49   浏览:40098次  

导读:从1956年的达特茅斯会议至今,AI已经走过了近70年的历程。这70年间,对于AI的期待有之,对于AI的恐慌有之,资本对于AI的追捧此起彼伏,技术人对于AI的探索应用也从未停歇。 千禧年时的我们,未曾畅想过移动互联网的繁盛,2022 年的我们,又该如何畅享未来 20...

TVP尖峰对话李开复、沈春华:AI 未来式与技术的发展、价值

千禧年时的我们,未曾畅想过移动互联网的繁盛,2022 年的我们,又该如何畅享未来 20 年的AI 发展进程?AI + 医疗会让我们活到 100 岁吗? AI 将如何让元宇宙变为现实? AI 可以帮人类找到幸福吗? AI 会加深偏见吗? AI 会抢走人类的工作吗? 传统企业是否能享受到 AI 红利?

李开复:《AI 未来进行式》与技术发展的动向

TVP尖峰对话李开复、沈春华:AI 未来式与技术的发展、价值

《AI未来进行式》这本书的创作起源主要有两方面原因,首先我认为 AI 是一个特别重要的技术,每个人都应该去了解它能创造什么机会,和自己有什么关联。父母可以帮助孩子做学习规划,年轻人可以为自己做职业规划,然后也会看到未来AI可能带来很多新的工作机会,我希望用讲故事的方式,把这本聚焦 AI 技术的科普书籍写得让每一个人都能读懂,目前来看反响还是不错的,让很多完全不了解 AI 的人大概搞懂了 AI 是什么意思。

所以这次和科幻小说作者陈楸帆合作创作《AI 未来进行式》的两个重要的目的,一是把难的技术给所有的人讲懂;二是希望给一些技术很强,但是场景想象力不是那么强的理工人,或做 AI的技术人,也让他们对未来的这种愿景和未来的场景能有一些灵感和建议。

得益于很多投资的经历,我也在其中学会了一些跨领域的知识,我个人认为 AI 创造的最大价值,一定是和场景的结合。在相关投资经历中,可以总结出三个 AI 创业的发展阶段:第一个是在比较早期的阶段时,因为 AI 技术人员很厉害,选择了先创立公司,再做应用;第二类是在某些领域,AI 已经可以创造很大的价值,比如我们当时投的第四范式、创新奇智、极飞科技等等,都有非常强的商业应用和落地场景。它们先靠场景落地,之后再做平台。而今天 AI 已经进入了第三个阶段,  AI 会和其他的科学交叉,也就是说 AI + Science,AI 可以被用在发明新药、基因编辑、新材料新能源等方向。《AI 未来进行式》这本书里包含了这三种方向,比如说在智能交通、无人驾驶就是一个重要的领域,比如说刚才说的 AI 制药,AI 在新能源方面的应用,这本书都会涉及,因为我们投资也要关注和了解这些产业领域,所以我们也尝试在书中描述出这些场景,而我们调研出的趋势则会给写作带来一些新的灵感。

在《AI 未来进行式》这本书里没有描述 AI+云,不是因为云计算不重要,恰恰是因为云太重要了,它已经成为了必须有的一个平台型的(技术服务),就像操作系统、数据库一样,已经不需要刻意去强调它的重要性。比如在无人驾驶领域中,我们假设的云和带宽都比现在大和快很多,包括 5G、6G 发展以后,对于云上数据调动的挑战,跟边缘计算的融合,这些在书中都有描绘。

《AI未来进行式》书里有一个「双雀」的故事章节,在这个故事里,AI 成为了孩子成长的陪伴助手。在人类老师的主导下,AI 化身为一个长期陪伴的助教角色,将孩子的学习与兴趣相结合,变得更有效率与主动性。虽然在 AI 时代,我认为人类老师的教育工作 AI 是替代不了的,但是 AI 可以做很多有益的补充,因此在这样的场景下,NLP(自然语言处理) 的技术就是其中的关键点。

我认为 NLP 在未来三到五年应该会有非常多的发展,一方面是在过去已有的应用,比如语音识别、机器翻译等方向有更多突破;另一方面是在还没有发生的场景下得到很多尝试,比如语音对话型的终极搜索引擎等等。NLP未来的发展,既会把已有的应用从不可用变成可用,从可用变成好用,也会把过去不可能做的应用变成可能做,这是我们现在重大的投资方向,也非常看好这个领域。

TVP尖峰对话李开复、沈春华:AI 未来式与技术的发展、价值

优图是腾讯旗下最顶级的人工智能实验室之一,过去多年一直专注于计算机视觉领域的基础研究和落地的探索。优图的 AI 能力,比较具有代表性的有大家耳熟能详的微信刷脸支付、自动 AI 美颜等等消费互联网领域的应用; 同时,实验室在工业质检、金融、教育等产业领域也有非常广泛的落地。

产业互联网向纵深发展的过程中,更多考验的是综合解决方案的能力,腾讯在这些垂直行业有很多年的深耕和非常多的技术落地的应用场景,在几个垂直领域也梳理出了一些标准化解决方案,可以得到快速的复制,这是腾讯做 AI 应用和其他公司比最大的优势。

一方面,云和 AI 的深度融合将语音识别、图像识别、NLP 等基础 AI 能力封装成了适用不同场景的 API 或工具性软件,让 AI 成为各行各业优化生产、提高效率的工具。比如在工业制造领域,腾讯工业云结合计算机视觉的经典技术,加上云端 GPU 强大的算力,可以为工厂提供超高准确度的基于 AI 的质检方案系统,将人工需要二十分钟才能完成的质检工作压缩到几秒钟,带来了质的飞跃,每年能节省数千万成本。

腾讯通过腾讯云,为各行各业的行业伙伴和开发者提供了数百项 AI 原子能力,覆盖了机器视觉、NLP、模式识别等众多领域,打造了面向不同行业场景下的 AI 解决方案,让更多中小企业可以快速地部署、应用 AI,让 AI 产生价值,帮助产业进一步数字化发展和转型升级。

如何看待 AI 的社会价值与意义

同时,AI 也是一把双刃剑,它可以帮我们省去很多重复性的任务和工作,但在这个过程中必然会有一部分人的工作岗位被 AI 所取代。但从正面的角度来看,当这些工作岗位的取代发生时,也必然会创造一些新的工作机会。我认为 20 年以后会达到一个非常美好的状态,这个状态就是人类会有更多的时间去做只有人类能做的事情,符合个人的兴趣和能力来做的事情,让每个人的工作更有趣更满意。

虽然目前 AI 的应用还有推荐算法的信息茧房效应、隐私保护等等问题,这都是 AI 技术应用后的一些普遍社会现象。不过我认为,一个新技术推出的时候一定会对社会产生冲击,但最后的解决方法都是技术人发明了新的技术来解决了这些负面影响,今天来听直播的这批人可能就是未来化解 AI 大部分问题的工作者。

一方面 AI 已经能够让社会更便捷,比如 Siri 语音助手、微信刷脸支付,现实生活中已经随处可见。另一方面 AI 也在攻克社会领域中一些以前解决不了的问题。优图之前利用 AI 技术协助寻人,帮助很多走失多年的儿童找到了自己的父母。去年,优图联合了国家天文台发布探星计划,利用优图的计算机视觉技术帮助中国天眼 FAST 大大提升了脉冲星的搜索效率,把以前一年甚至更长时间才能处理完的数据,现在用机器学习的技术可能几天就处理完了,这是几个数量级的提升,可以极大加速科学探索的效率。

AI 与医疗的美妙结合

因此,我认为 AI 在医疗行业的优化迭代,的确可以做得更好,但是还要综合考虑各种利益、道德、法律的问题,所以在落地实际诊断方面,还是会需要更多的磨合和训练。我认为在诊断方面更易被业界接受的是人机协作模式:以医生为主,他是 AI 的老板,AI 协助他做诊断,这样的话,在医生的基础之上,AI只会提高他正确诊断的概率。

最后我想讲的是,医疗行业背后有很多生物学、化学、制药等领域人员,他们处于电脑模拟之后、临床之前的实验室工作阶段,这其实也非常适合 AI 去做。它带来的价值不是取代了人力成本,更重要的是机器本身可以 24 小时不间断地做实验,研发的进程指数级提升。最终 AI 理想的效果是让新药研发更快,成本更低,让很多罕见病,不可医的并都变得可医,让人享受更长久的健康,这是我们可以期待的,也是 AI 能做出的最大且没有争议的贡献。

AI 本身如果要彻底取代医生的话,我觉得还有很多的问题要解决。比如说现在的 Deep Learning 算法的可解释性。这个可解释性问题如果不解决的话,没有人敢直接拿 Deep model 预测出来的诊断给到病人,因为你都不知道算法的决定是怎么做出来的。

大家都知道一次胸部的 CT 扫面往往可以会产生几百张的影像,如果完全依靠人眼来看的话,要十几二十分钟,现在用 AI 的算法,可以把医生的检查效率提高一个数量级,这样可以让患者得到更及时的治疗。

如何做好科技向善,避免数据隐患双刃剑?

比如隐私保护的问题,如何确保数据不被滥用,就涉及到很多隐私计算的算法,比如联邦学习。以联邦学习为代表的隐私算法,可以让我们鱼与熊掌兼得,既能把数据授权去做训练,又能确保对训练模型中的数据构成脱敏的作用,不至于产生隐私问题。

而另一点,偏见的问题其实主要来自于数据的不平衡,这些问题是做 AI 的技术人应该警惕的,我们做产品之前要确保数据有合理的覆盖度、平衡度,除了个人的观念,也需要有一些工具的提醒校正。这背后涉及到的可解释性相当困难,一方面我们可以做一些可解释的机器学习模型,另一方面可以试着对已有的标准模型做可解释,但不要对结果的精确性、细腻度过于吹毛求疵。

对技术人来说,怎么看待AI技术的两面性?

据我所知,至少针对 GAN 生成的图像,即使人眼看不出真假的差别,但对于算法来说还是能够捕捉到细微的差别,因为生成的数据和真实的数据之间,它们的分布存在一个 domain gap。就是说你用大量的数据去训一个深度学习的判别真假图像的模型,目前是很容易判断这个图像到底是生成的,还是真实的。至少目前是这样。

TVP 大咖发问关于 AI 的那些事儿

李开复:据我观察,国内很多传统企业数字化并没有做得很好,当开始使用 AI 的时候碰到的问题是需要海量的资源和时间先把数据整合好,然后才能进入到 AI 的落地环节。许多传统企业的企业家或是没有意识到这样的挑战,或是下面的数字化团队没有做好信息同步,最后发现做了很多努力 AI 还是不能起作用。其实数据的储存、整理、分析是最难的部分,一旦做好了,落地 AI 反而是相对较小的问题。

沈春华:对,我觉得这可以说是所有的云计算的提供商他们正在做的一个事情, 目的就是使应用 AI 技术的门槛大大的降低, 然后能够快速的去铺开,但是这还有很长的路要走。我相信随着技术的发展,我们有一天是会达到那一步的,这个过程可能会比较长。

李开复:我觉得其实在深度学习的平台上还有很大的机会,尤其是考虑到应用的场景的话,其实问题不是在我们没有发明足够多的好算法,而是我们没有能够想出方法把它更快引入应用,所以我觉得应用还有很大的红利空间。

沈春华:我补充一点。我一直在做计算机视觉相关的算法。我个人理解,不管是计算机视觉也好,还是 NLP 也好,在过去几年有人觉得深度学习的技术发展是不是到了一个瓶颈了,下面就很难发展了。但是,过去几年我们看到的是,突然一下子就又出来一个突破性的算法,带动整个领域的发展。这样的例子在过去几年非常多。这一次的人工智能发展起来到今天算的话可能也就 10 年时间, 如果从 2012 年 Hinton 的那篇 ImageNet 的图片分类的论文开始算,刚好 10 年时间。

三年前 GPT3 技术被发明出来,GPT3 颠覆了过去几十年的 NLP 的研究成果。我个人觉得 AI远没有到天花板,或者是到瓶颈期这样的程度。AI 这个领域的发展非常快。

结语

TVP 自成立之初,便希望能够“用科技影响世界”,让技术普惠大家,践行科技向善的初心与本心。未来的路上,愿我们一路携手并肩,共同前行。

赞助本站

AiLab云推荐
推荐内容
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港