诠科教经授权发布,转载请注明出处
诠科教说
报告导读
中国人工智能应用趋势报告
近日,2021中国人工智能应用趋势报告明确提出新基建助推人工智能应用迈入新阶段。
本文将以图片的形式展示报告全文,如需PDF完整版本请在诠科教公众号对话页面回复“AI应用0202”获取,供大家研读!
全文建议阅读12分钟
诠科教小编建议收藏
报告摘要
新基建加速人工智能应用落地
新冠疫情、经济增长放缓、竞争加剧等多重挑战下,企业加速应用人工智能进行智能化建设,但仍面临诸多挑战。
2020年,人工智能被列入新基建的范畴,新基建为人工智能发展提供数据、算力和算法三个层面的基础设施支撑;同时,新基建将拓展人工智能的应用场景。
企业人工智能应用新趋势
AI+RPA助力企业实现端到端自动化。AI与RPA技术的结合将实现RPA和AI技术单独使用无法实现的效果,扩展了企业自动化的业务价值。
知识图谱技术助力企业挖掘非结构化数据的价值,进一步从感知智能迈向认知智能。
人工智能工程化助力智能化应用规模部署。在数据治理、模型开发两大环节,数据中台、AI中台等建设帮助企业提升智能化应用开发效率和业务响应敏捷性。
人工智能未来展望
人工智能正在从云计算向边缘计算延伸,未来将形成云计算与边缘计算协同发展的态势,为人工智能提供更强大的基础设施。
随着人工智能应用不断深入,作为基础设施之一,人工智能治理体系建设的紧迫性不断增强,企业应当将治理体系作为人工智能应用中的重要考量因素。
2020年初,人工智能被纳入新基建的范畴,与5G、特高压、城际高速铁路和城市轨道交通、新能源汽车充电桩、工业互联网、大数据中心一起被确立为新基建的七大领域。
新基建的概念于2018年12月的中央经济工作会议首次提出,随后全国各地掀起了一股新基建建设的热潮,各地政府和企业踊跃参与,纷纷宣布相关投资计划。根据信通院的数据,“十四五”期间,新基建投资预计将达到10.6万亿,占全社会基础设施投资10%左右。
人工智能本身被定义为一种新型基础设施,将助力产业实现智能化;反过来,新基建又将推动人工智能产业化,为人工智能产业提供基础设施,助力人工智能场景落地。
具体来看,新基建将在数据和算力、算法三个层面为人工智能提供基础设施支持。
数据量迎来爆发增长。新基建推动数据量增长的源泉主要是5G网络和IoT的发展。根据工信部的数据,截至12月中旬,中国累计建成71.8万个5G基站,数量位居全球第一。随着未来5G基站数量进一步增加,5G网络逐渐普及。5G网络具备高传输速率、低延时的特点,5G时代,更多的线下设备将联网,真正迎来大规模物联网时代,数据量将迎来爆发增长。
新基建为人工智能发展提供算力支持。数据中心是新基建的重要领域之一,成为各地方政府和企业加码投资的对象。数据中心的大规模建设将为数据中心的使用方包括云服务提供商以及其他传统行业企业降低数据托管的成本。数据中心的建设将加速企业上云,通过云端进行AI模型开发、训练和推理等,将降低AI对传统芯片硬件算力的依赖。
此外,在物联网环境下,大部分IoT场景对数据实时性要求高,属于延迟敏感、数据密集型技术,需要在边缘处进行数据处理,带动了边缘数据中心的崛起。边缘数据中心的发展有利于减轻云数据中心压力,降低数据中心的整体电力消耗,从而降低企业发展人工智能所需的总体算力成本。
算法层面,作为新基建的一部分,人工智能本身将受益于新基建的政策支持。目前中国人工智能产业主要依赖以TensorFlow、Caffe等为主的美国企业或机构研发的算法框架,新基建强调加强自主创新,将推动中国企业构建自主可控的算法支撑体系。
新基建拓展人工智能应用场景
新基建区别于传统基建的核心在于数字化、智能化的属性,人工智能将在新基建的智能化建设中发挥关键作用,拓展应用场景。新基建涉及到的5G、特高压、城际高速铁路和轨道交通、新能源汽车充电桩、工业互联网、大数据中心等领域,都存在大量可利用AI改进业务流程、提升效率的场景。
以下将以5G、工业互联网、城际高速铁路和城市轨道交通三个领域为例,通过具体实例分析新基建相关场景如何使用人工智能技术,改造业务流程。
1)5G
5G建设涉及到基站选址、机房设备更新、5G通讯设备安装等环节,在这些环节中,AI都可发挥作用,如在选址环节,可基于当地人口规模、产业发展状况等数据,利用人工智能技术预测不同片区对5G网络的需求,从而实现更科学的选址。
中国铁塔是由中国移动、中国联通、中国电信和中国国新共同出资设立的大型通信铁塔基础设施服务企业,承担了部分5G基站的具体实施部署工作。中国铁塔搭建了铁塔AI中台,将AI技术融合于公司运营管理的每个环节,支撑了5G网络的部署、节能和运维。
具体来看,铁塔AI中台为铁塔公司各项AI应用研发提供了需求、方案、建模、上线、反馈等全环节的全栈式支持,并沉淀符合铁塔公司业务场景的共性AI能力。对内,可赋能铁塔公司运营管理效率提升、降低成本、实现业务自动化;对外,将强化铁塔公司的产品质量和服务水平、创新用户体验。
2)工业互联网
工业互联网平台能够基于设备运行数据、工业参数、质量检测数据、物料配送数据和进度管理数据的采集,利用AI技术,对数据进行分析,在制造工艺、生产流程、质量管理、设备维护等具体场景进行优化。
中国石油将人工智能技术运用在了石油勘探开发业务中,共同打造了勘探开发认知计算平台,建设了覆盖勘探开发所有专业的知识图谱。石油勘探的一个重要环节“测井”,要对数千米以下的底下构造和油藏特征进行判断,十分依赖专家经验。不过,借助该平台,中国石油的大港油田,对900口油井进行机器学习,实现了油气层位的智能识别,平均时间缩短了70%,识别准确率达到了测井解释专家的水平,降低了从业门槛。
3)城际高速铁路和城市轨道交通
高速铁路和城市轨道交通建设过程中,在工程建设、勘查设计、装备制造、铁路运输等环节,都可利用人工智能技术,提高效率、减少人力成本。
中国中车某分公司上线了高速列车故障预测与健康管理系统,实现了对车辆的关键部件、核心系统等状态的实时监测,助力其对高铁车辆从状态维修转变为预测性维护。
具体来看,该系统通过远程获取高铁轴箱轴承的状态信息原始数据和判据特征,在监测中心做深度的分析与诊断,对列车关键设备及运营关键设备提供状态监测、PHM、故障诊断等服务,并转变被动维护策略为预测性维护策略。上线了该系统后,中国中车某分公司提升了列车运营的安全性和稳定性,能够准备识别20余种故障模式,轴承故障识别精准率超过90%。
人工智能落地进展与实践案例
2020年,人工智能技术落地进展加快,尤其是新冠疫情爆发加快了AI技术的落地。面对此次疫情出现的种种问题,以人工智能为主的数字技术为疫情防控提供了可靠的应对工具,在医疗和城市治理等多个领域中释放应用价值。
本章将重点分析人工智能在不同行业的最新应用进展。我们将以金融AI应用较广泛的行业为例,尝试对相关AI应用场景的成熟度以及新应用场景情况进行剖析,并展示相关成熟的应用案例。
金融在金融AI应用场景
金融行业仍然是目前人工智能应用最为成熟的领域。金融业的业务流程大致包括产品设计研发、营销与销售、风险管理和支持性业务四个方面,在这四个业务环节,都已有众多成熟的AI应用场景。下图展示了当前人工智能在金融行业产业链不同环节各个应用场景的成熟度。
当前,随着银行业进入长期低增长的“存量时代”,企业普遍更加重视通过智能化手段提高经营效率和增加收入,而构建营销风控一体化的管理体系,成为了银行业数字化转型的核心环节。
在营销与销售方面,企业更加注重挖掘存量用户的价值,在用户场景、用户洞察、用户触达、用户转化、用户运营等方全生命周期中,在各个环节中通过AI技术实现销售闭环。比如在用户洞察环节,银行业企业普遍面临对消费者数据开发不足的问题,AI技术的加持能够实现更深层次的客户洞察,基于多维度的用户数据构建用户画像,实现更精准的用户触达。
风控方面,目前国内银行在零售信贷风险管理领域的AI应用实践主要集中在贷前反欺诈、贷前授信审批、贷中预警和贷后处置四个方面。以贷前和贷中阶段为例,银行和消费金融公司能基于大数据和机器学习,利用已有的用户标签建立资质挡板,构建人群基础画像。并在此之上进行后续环节的风险筛查,覆盖贷前风险识别和定额,以及贷中实时监测预警。
与此同时,除了传统营销与风控场景,AI在金融业的应用逐渐渗透至监管领域。金融监管政策制定涉及多方利益,往往牵一发而动全身,通过引入深度学习等AI技术,可对政策带来的影响进行分析预测,辅助监管措施的制定。
结语
2020年的新冠肺炎疫情,让企业意外“收获”了推进数字化和智能化的动力。关于智能化这一问题,企业的进展并不同,但经过疫情的洗礼,智能化已经不再是一个是否需要的问题,而是该以什么样的方式推进的问题。
后疫情时代,面对众多潜在的人工智能应用场景,企业在坚定智能化方向的同时,需要以业务需求为引领,探索人工智能技术应用与自身业务场景的结合点,理性评估应用价值,找到最适合自身的智能化路径。
......