展会信息港展会大全

Argo AI、微软、CMU合作新网络架构 预测其他车辆的姿态与形状
来源:互联网   发布日期:2020-10-29 14:05:50   浏览:10372次  

导读:盖世汽车讯 驾驶员在要变道时,就会注意确保没有车辆出现在盲区,而这种意识对于自动驾驶系统而言也非常重要。因此,自动驾驶技术需要依赖强大的感知中枢,而该中枢预计可以识别环境中所有相关的主体,包括预测道路上其他车辆的精确姿态和形状。 (图片来源...

盖世汽车讯 驾驶员在要变道时,就会注意确保没有车辆出现在盲区,而这种意识对于自动驾驶系统而言也非常重要。因此,自动驾驶技术需要依赖强大的感知中枢,而该中枢预计可以识别环境中所有相关的主体,包括预测道路上其他车辆的精确“姿态和形状”。

Argo AI、微软、CMU合作新网络架构 预测其他车辆的姿态与形状

(图片来源:Argo AI)

现在,自动驾驶汽车系统可以利用最常见的传感模式之一激光雷达的数据来观察周围情况。据外媒报道,自动驾驶汽车技术公司Argo AI、微软和卡内基梅隆大学(CMU)的研究人员合作,推出了一个全新的网络架构,可以通过部分激光雷达的观测信息估计车辆的形状和姿态。

现在用于预测姿态和形状的SOTA法通常会首先估计局部点云的姿态,然后在部分输入信息中加入该姿态,再预测形状。不过,此种编码姿态解码以及编码-形状解码架构会导致形状估计误差,最终的性能很差。此外,部分输入的信息被冗余编码两次。

因此,为何不使用一个共享式编码网络以估计姿态和形状呢?

研究人员采用该策略,将编码合并到一个过程中,以减少冗余,并在共享式编码网络中实现稳定的姿态和形状估计。

训练该共享式编码网络可分为两部分。首先,对编码器和补全解码器进行形状补全训练。接下来,冻结编码器,并采用冻结编码器产生的代码对姿态解码器进行训练。冻结是通过逐步冻结隐藏层来加速神经网络训练的常用技术。与基线网络相比,用此种方法训练的姿态估计器的精度得到显著提高。

未来,Argo AI会在追踪等下游模块中利用该形状估计模型,并在实时系统中采用该种新型架构。


赞助本站

AiLab云推荐
推荐内容
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港