人工神经网络的特点和优越性,主要表现在三个方面:
第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。
第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。
第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
人工神经网络突出的优点:
(1)可以充分逼近任意复杂的非线性关系;
(2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性;
(3)采用并行分布处理方法,使得快速进行大量运算成为可能;
(4)可学习和自适应不知道或不确定的系统;
(5)能够同时处理定量、定性知识。