12月11日消息,据VentureBeat网站报道,在第六届ImageNet图像识别大赛上,微软研究团队取得多项第一名。据结果显示,微软研究团队所设计的图像识别系统打败了来自谷歌、因特尔、高通、腾讯以及一些初创公司和学术实验室所设计的图像识别系统。
微软发表博客日志称,微软研究团队包括何恺明、张祥雨、任少卿和孙剑四位成员,他们所设计的系统名为“深度残差学习图像识别”,该系统会在即将发表的报告中详细介绍。
该技术主要因其复杂性著称。
微软团队表示,“我们所训练的神经网络的深度超过了150层。我们提出“深度残差学习”框架,这个框架能减轻极深度网络的优化和收敛。当网络深度在原有基础上大幅度加深时,“深度残差网”的准确性就会显现出来,这种准确性是许多普通网络在加深后也无法达到的。
科技公司如今非常热衷于这块研究领域,并希望进一步改进自有内部系统以及面向用户的产品。
深度学习的宽阔范畴正处这些高性能网络的核心,宽阔范畴涉及到在大数据集上(例如相片)训练人工神经网络,然后向神经网络展示新数据,获取推论。
微软幽默地用“猜我几岁” (How Old Do I Look?)和“我的胡子帅吗” (How’s My Moustache Doing?)等这类应用来介绍自家的图像识别技术。微软已经通过牛津项目将图像识别技术推向市常
ImageNet图像识别大赛要求选手所设计的图像系统能准确定位来自Flickr和搜索引擎的10万张图片,并把图片划分入1000个物体分类中(狼蛛、iPod、清真寺、玩具店、调制解调器等),错误率越低越好。
微软参赛系统的分类错误率为3.5%,定位错误率为9%。
几年前,在图形分类技术上,谷歌、初创公司Clarifai和NEC还是前三甲。
同时,微软的参赛团队还获得了ImageNet图像识别大赛物体探测项目第一名。(子萌)