展会信息港展会大全

计算机真的能拥有人工智能?
来源:互联网   发布日期:2014-10-30 12:15:31   浏览:13410次  

导读:【推荐图书】:《智能时代》 【作者】:(美)霍金斯,(美)布拉克斯莉 【译者】:李蓝,刘知远 【出版社】:中国华侨出版社 从谷歌大脑到百度大脑,数十年来,人工智能领域的科学家们宣称,当计算机足够强大时,就将拥有智能。但是计算机和人脑的工作原理...

【推荐图书】:《智能时代》

【作者】:(美)霍金斯,(美)布拉克斯莉

【译者】:李蓝,刘知远

【出版社】:中国华侨出版社

从谷歌大脑到百度大脑,数十年来,人工智能领域的科学家们宣称,当计算机足够强大时,就将拥有智能。但是计算机和人脑的工作原理完全不同,一个只是被编出来的程序,另一个则拥有自我学习的能力;一个必须做到绝对完美才能运行,另一个则天生能够灵活应对,对失误有容忍度;一个具有中央处理器,另一个则不存在中央控制。

而人们一直在追求实现人工智能,这事还得从图灵说起,因为人工智能的方法是伴随数字计算机的出现而诞生的。

计算机真的能拥有人工智能?

----图灵测试与人工智能----

计算机革命及其所有成果都是以英国数学家阿兰·图灵(Alan Turing)“通用计算机”这一想法作为基石,实际上图灵也有过建造智能机器的思考。他一方面感到计算机可以拥有智能,另一方面却不愿被卷入对其可能性的争论之中。

由于认为自己无法给智能一个正式的定义,他甚至没有作出尝试。取而代之的是,他提出了一个证明智能存在的方法,即著名的图灵测试:如果一台计算机能够骗过人类询问者,诱使他相信它也是人类,那么从定义上来说,这台计算机就拥有智能。以此测试作为检测工具,以图灵机作为媒介,图灵就这样帮助开创了人工智能领域。这一领域的信条是:大脑不过是另一种类型的计算机。因此,只要能让人工智能系统产生与人类相似的行为即可,如何设计它并不重要。

具有讽刺意味的是,最有可能通过图灵测试的,是一个叫作Eliza的程序,它能够模仿精神分析师,将你的问题重新表述成新问题来反问你。例如,如果你输入“我和我的男朋友不说话了”,Eliza可能会回应:“跟我说说你的男朋友吧!”或者“是什么原因让你同你的男朋友不再说话了呢?”尽管它只是个被当成玩笑设计出来的无聊程序,但还是成功地骗过了不少人。也有一些正正经经设计出来的程序,比如积木世界(Blocks World),它模拟出一个包括许多不同颜色和形状积木的房间。你可以向程序提问,例如“在大红色方块上面有一个绿色金字塔形的积木吗?”或者向它发出指令,例如“请把蓝色方块移动到红色的小方块上面”,它能回答你的问题,或者按照你的要求工作。这一切都是模拟的——也确实管用。然而它只局限在完全虚拟的积木世界里,程序员们无法将其扩展到实际的应用中。

与此同时,人工智能技术领域的一连串表面上的成功和相关新闻给公众留下了深刻的印象。最初引起人们兴奋的是一个能够解决数学定理问题的智能程序。自柏拉图以来,多步演绎推理就被视为人类智慧的巅峰,因此起初看来,人工智能就像中了头彩。然而,它们再一次被证明作用有限,并且没有任何接近广义智能的表现。计算机程序还一度在棋盘类游戏中达到了专家水平,IBM的“深蓝”电脑对战国际象棋世界冠军加里·卡斯帕罗夫(Gary Kasparov)时的大获全胜曾经轰动一时。但是这些胜利毫无意义,因为“深蓝”电脑并非赢在比人类更聪明,而是赢在比人类快了几百万倍的运算速度上。“深蓝”没有直觉。人类象棋大师综观盘面,一眼就看得出棋盘上的有利和危险区域,而一台计算机对于这些重要信息没有天生的直觉,必须去试探更多的选择。除此之外,“深蓝”对于象棋的历史毫无概念,对自己的对手也一无所知。就像计算器能够做算术却不懂数学一样,“深蓝”能够下棋,但并不是真正了解象棋。

----计算机为什么无法做到真正的智能----

加州大学伯克利分校的著名哲学教授约翰·塞尔(John Searle)当时提出,计算机不是智能,也无法获得智能。为了证明这一点,在1980年,他想出了一个被称为“中文屋”的思维实验:

假设有间屋子,墙上开了一条缝,屋里的桌子旁边,坐着一个会说英语的人。他手头有一本很厚的说明手册,还有足够用的铅笔和草稿纸。通过翻阅手册,他能够根据用英文写成的说明,来处理、排序和比较汉字。重点是,手册中的指令同汉字的含义没有丝毫关系,它们只负责解决汉字应如何被复制、删除、重新排序和转录等问题。

屋外有人从墙上的缝塞进来一张纸。上面用中文写着一个故事和与之相关的问题。屋内的人对中文一窍不通,但他接过纸来,开始按照手册上的指令工作。这是一种生搬硬套的辛苦活,指令有时让他在纸上写下一些汉字,有时又让他移动或删除一些汉字。他按步就班地根据规则写写删删,直到指令告诉他工作已经完成为止。这时,他已经写出了一页新的汉字,这正是那些问题的答案,而他对此并不知情。按照指令,他需要将这页纸从缝中送出去。他照做了,心中却充满疑惑:这个乏味的游戏究竟是在做什么?

屋外,一个懂中文的女人读罢这页汉字后,表示答案完全正确——甚至还很有见地。如果你问她,这些答案是否出自于一个透彻地理解了故事的聪明头脑?她一定会说是的。但她说得对吗?是谁理解了这个故事?当然肯定不可能是屋里的人——他完全不懂中文,对这个故事一无所知。但也不可能是那本手册吧——它只不过是一本安静地躺在纸堆里的书。那么,理解是从何处产生的呢?塞尔的回答是:根本没有“理解”这回事——有的只是无需动脑的翻书和写写划划而已。现在让我们转向问题的关键:“中文屋”与数字计算机何其相似!屋里的人就相当于是CPU,只会无意识地执行指令;手册相当于向CPU下达指令的软件程序;而那些纸就是内存。因此,一台通过产生相同的人类行为来模拟智能的计算机,无论设计得多么巧妙,也不会具有理解能力和智能。(塞尔曾明确表示,他不知道什么是智能——这句话的言外之意是,不管智能是什么,计算机都肯定没有)。

这种说法令哲学家和人工智能专家之间产生了巨大分歧。它催生了数百篇夹杂着尖刻的言辞的相互攻击的文章。人工智能的捍卫者们提出了许多论据来逐条反驳塞尔,例如,他们声称:虽然屋子的各组成部分都不懂中文,但如果将其视为一个整体来看,它还是懂的;屋里的人是懂中文的,只不过他没有意识到这一点。在我看来,塞尔的说法是对的。当我谨慎思考过“中文屋”实验的论证和计算机的工作原理之后,我并没有看到任何地方有“理解”的产生。这让我坚信,我们需要弄清什么是“理解”,并为它下一个定义。这个定义应当能够清楚地告诉我们,什么样的系统是智能的,什么样的不是;什么样的系统懂中文,什么样的不懂。而仅仅凭借系统的行为,是无法进行判断的。

人并不需要刻意去“做”任何事来理解一个故事。我可以安静地读一个故事,虽然没有任何外显的行为表明我清楚地理解了,但至少对我而言,这是个事实。另一方面,你无法从我安静的行为上看出我是否理解了故事,你甚至无从得知我是否懂得这个故事的写作语言。虽然过后你可以向我提问,但我对故事的理解发生在我阅读之时,而非回答之际。本书的其中一个主题便是:理解是无法通过外部行为来测量的,相反,它是对大脑如何形成记忆并利用这些记忆来做出预测的一个内部度量。关于这一点,我们将在接下来的章节中谈到。“中文屋”、“深蓝”电脑和大多数计算机程序在这一点上没有任何相类似之处,它们并不理解自己在做的事情。而我们判断一个计算机是否智能,除了通过它的输出,即行为外,并没有别的途径。

人工智能为自己辩护的最终论据是:理论上讲,计算机能够模拟整个大脑。一台计算机可以模拟所有的神经元和它们之间的连接,一旦它做到这一点,就意味着大脑“智能”和计算机的模拟“智能”之间不再有任何区别。虽然这在实际中不太可能,但我同意这一看法。遗憾的是,人工智能的研究者们并没有模拟大脑,因此他们的程序没有智能。而在理解大脑如何工作之前,也无法去模拟它。


赞助本站

相关热词: 人工智能 智能家居

相关内容
AiLab云推荐
推荐内容
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港