展会信息港展会大全

印刷体文字的识别研究方法分类介绍
来源:互联网   发布日期:2011-12-25 22:48:02   浏览:124598次  

导读:识别方法是整个系统的核心。用于汉字识别的模式识别方法可以大致分为结构模式识别、统计模式识别及两者的结合。下面分别进行介绍。 结构模式识别 汉字是一种特殊的模式,其结构虽然比较复杂,但具有相当严格的规律性。换言之,汉字图形含有丰富的结构信息,...

    识别方法是整个系统的核心。用于汉字识别的模式识别方法可以大致分为结构模式识别、统计模式识别及两者的结合。下面分别进行介绍。

    结构模式识别

    汉字是一种特殊的模式,其结构虽然比较复杂,但具有相当严格的规律性。换言之,汉字图形含有丰富的结构信息,可以设法提取含有这种信息的结构特征及其组字规律,作为识别汉字的依据,这就是结构模式识别。

    结构模式识别是早期汉字识别研究的主要方法。其主要出发点是汉字的组成结构。从汉字的构成上讲,汉字是由笔划(点横竖撇捺等)、偏旁部首构成的;还可以认为汉字是由更小的结构基元构成的。由这些结构基元及其相互关系完全可以精确地对汉字加以描述,就像一篇文章由单字、词、短语和句子按语法规律所组成一样。所以这种方法也叫句法模式识别。识别时,利用上述结构信息及句法分析的方法进行识别,类似一个逻辑推理器。

    用这种方法来描述汉字字形结构在理论上是比较恰当的,其主要优点在于对字体变化的适应性强,区分相似字能力强;但是,在实际应用中,面临的主要问题是抗干扰能力差,因为在实际得到的文本图象中存在着各种干扰,如倾斜,扭曲,断裂,粘连,纸张上的污点,对比度差等等。这些因素直接影响到结构基元的提取,假如结构基元不能准确地得到,后面的推理过程就成了无源之水。此外结构模式识别的描述比较复杂,匹配过程的复杂度因而也较高。所以在印刷体汉字识别领域中,纯结构模式识别方法已经逐渐衰落,句法识别的方法正日益受到挑战。

    统计模式识别

    统计决策论发展较早,理论也较成熟。其要点是提取待识别模式的的一组统计特征,然后按照一定准则所确定的决策函数进行分类判决。

    汉字的统计模式识别是将字符点阵看作一个整体,其所用的特征是从这个整体上经过大量的统计而得到的。统计特征的特点是抗干扰性强,匹配与分类的算法简单,易于实现。不足之处在于细分能力较弱,区分相似字的能力差一些。常见的统计模式识别方法有:

    (1)模板匹配。模板匹配并不需要特征提取过程。字符的图象直接作为特征,与字典中的模板相比,相似度最高的模板类即为识别结果。这种方法简单易行,可以并行处理;但是一个模板只能识别同样大小、同种字体的字符,对于倾斜、笔划变粗变细均无良好的适应能力。

    (2)利用变换特征的方法。对字符图象进行二进制变换(如Walsh,Hardama变换)或更复杂的变换(如Karhunen-Loeve,Fourier,Cosine,Slant变换等),变换后的特征的维数大大降低。但是这些变换不是旋转不变的,因此对于倾斜变形的字符的识别会有较大的偏差。二进制变换的计算虽然简单,但变换后的特征没有明显的物理意义。K-L变换虽然从最小均方误差角度来说是最佳的,但是运算量太大,难以实用。总之,变换特征的运算复杂度较高。

    (3)投影直方图法。利用字符图象在水平及垂直方向的投影作为特征。该方法对倾斜旋转非常敏感,细分能力差。

    (4)几何矩(GeometricMoment)特征。

M.K.Hu提出利用矩不变量作为特征的想法,引起了研究矩的热潮。研究人员又确定了数十个移不变、比例不变的矩。我们都希望找到稳定可靠的、对各种干扰适应能力很强的特征,在几何矩方面的研究正反映了这一愿望。以上所涉及到的几何矩均在线性变换下保持不变。但在实际环境中,很难保证线性变换这一前提条件。

    (5)Spline曲线近似与傅立叶描绘子(FourierDescriptor)。两种方法都是针对字符图象轮廓的。Spline曲线近似是在轮廓上找到曲率大的折点,利用Spline曲线来近似相邻折点之间的轮廓线。而傅立叶描绘子则是利用傅立叶函数模拟封闭的轮廓线,将傅立叶函数的各个系数作为特征的。前者对于旋转很敏感。后者对于轮廓线不封闭的字符图象不适用,因此很难用于笔划断裂的字符的识别。

    (6)笔划密度特征。笔划密度的描述有许多种,这里采用如下定义:字符图象某一特定范围的笔划密度是在该范围内,以固定扫描次数沿水平、垂直或对角线方向扫描时的穿透次数。这种特征描述了汉字的各部分笔划的疏密程度,提供了比较完整的信息。在图象质量可以保证的情况下,这种特征相当稳定。在脱机手写体的识别中也经常用到这种特征。但是在字符内部笔划粘连时误差较大。

    (7)外围特征。汉字的轮廓包含了丰富的特征,即使在字符内部笔划粘连的情况下,轮廓部分的信息也还是比较完整的。这种特征非常适合于作为粗分类的特征。

    (8)基于微结构特征的方法。这种方法的出发点在于,汉字是由笔划组成的,而笔划是由一定方向,一定位置关系与长宽比的矩形段组成的。这些矩形段则称为微结构。利用微结构及微结构之间的关系组成的特征对汉字进行识别,尤其是对于多体汉字的识别,获得了良好的效果。其不足之处是,在内部笔划粘连时,微结构的提取会遇到困难。

    (9)特征点特征。早在1957年,SolatronElectronicsGroup公司发布了第一个利用窥视孔(peephole)方法的OCR系统。其主要思想是利用字符点阵中一些有代表性的黑点(笔划),白点(背景)作为特征来区分不同的字符。后有人又将这种方法运用到汉字识别中,对其中的黑点又增加了属性的描述,如端点、折点、交叉点等。也获得了比较好的效果。其特点是对于内部笔划粘连的字符的识别的适应性较强,直观性好,但是不易表示为矢量形式,不适合作为粗分类的特征,匹配难度大。

    当然还有许多种不同的统计特征,诸如图描述法、包含配选法、脱壳透视法、差笔划法等,这里就不一一介绍了。

    统计识别与结构识别的结合

    结构模式识别与统计模式识别各有优缺点,随着我们对于两种方法认识的深入,这两种方法正在逐渐融合。网格化特征就是这种结合的产物。字符图象被均匀地或非均匀地划分为若干区域,称之为“网格”。在每一个网格内寻找各种特征,如笔划点与背景点的比例,交叉点、笔划端点的个数,细化后的笔划的长度、网格部分的笔划密度等等。特征的统计以网格为单位,即使个别点的统计有误差也不会造成大的影响,增强了特征的抗干扰性。这种方法正得到日益广泛的应用。

    人工神经网络

    人工神经网络(ArtificialNeuralNetwork,以下称ANN)是一种模拟人脑神经元细胞的网络结构,它是由大量简单的基本元件-神经元相互连接成的自适应非线性动态系统。 虽然目前对于人脑神经元的研究还很不完善,我们无法确定ANN的工作方式是否与人脑神经元的运作方式相同,但是ANN正在吸引着越来越多的注意力。

    ANN中的各个神经元的结构与功能较为简单,但大量的简单神经元的组合却可以非常复杂,我们从而可以通过调整神经元间的连接系数完成分类、识别等复杂的功能。ANN还具有一定的自适应的学习与组织能力,组成网络的各个“细胞”可以并行工作,并可以通过调整“细胞”间的连接系数完成分类、识别等复杂的功能。这是冯·诺依曼的计算机无法做到的。

    ANN可以作为单纯的分类器(不包含特征提取,选择),也可以用作功能完善的分类器。在英文字母与数字的识别等类别数目较少的分类问题中,常常将字符的图象点阵直接作为神经网络的输入。不同于传统的模式识别方法,在这种情况下,神经网络所“提取”的特征并无明显的物理含义,而是储存在神经物理中各个神经元的连接之中,省去了由人来决定特征提取的方法与实现过程。从这个意义上来说,ANN提供了一种“字符自动识别”的可能性。此外,ANN分类器是一种非线性的分类器,它可以提供我们很难想象到的复杂的类间分界面,这也为复杂分类问题的解决提供了一种可能的解决方式。

    目前,在对于象汉字识别这样超多类的分类问题,ANN的规模会很大,结构也很复杂,现在还远未达到实用的程度。其中的原因很多,主要的原因还在于我们对人脑的工作方式以及ANN本身的许多问题还没有找到完美的答案。

赞助本站

相关内容
AiLab云推荐
推荐内容
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港