展会信息港展会大全

对26个英文字符进行特征识别的神经网络模型
来源:互联网   发布日期:2011-12-16 20:24:29   浏览:55411次  

导读:1.案例描述 在理想情况下,每个英文字母都可用一个5*7的栅格来表示,每个栅格代表一个布尔值,但实际上,字母的表示有时会受到噪声的污染,使栅格发生变化。为了能排除噪声的干扰,顺利地识别26个英文字母,必须设计高性能的神经网络。 2.建模实现 本例输...

1.案例描述
在理想情况下,每个英文字母都可用一个5*7的栅格来表示,每个栅格代表一个布尔值,但实际上,字母的表示有时会受到噪声的污染,使栅格发生变化。为了能排除噪声的干扰,顺利地识别26个英文字母,必须设计高性能的神经网络。
2.建模实现
本例输入样本向量有26个,每个向量有35(5*7)个元素。每一个目标向量均有26个元素,且仅有1个对应于字母顺序的那个元素为1,其余25个元素为0。例如字母A所对应的目标向量的第一个元素为1,其余元素皆为0。 神经网络结构:本例由两层神经网络构成,第一层35个输入、26个输出、10个隐层,第二层为竞争层,其目的是为了使第一层的输出向量能更逼真地反映出含有噪声的输入向量,对输出向量做进一步的处理,通过竞争层之后的输出向量才量实际应用的向量。 详见本站ImgNet PF 模式识别通用平台示例案例

赞助本站

相关内容
AiLab云推荐
推荐内容
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港