展会信息港展会大全

什么是模式识别?
来源:互联网   发布日期:2011-12-16 19:02:01   浏览:14354次  

导读:模式识别是一种从大量信息和数据出发,在专家经验和已有认识的基础上,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别的过程。模式识别包括相互关联的两个阶段,即学习阶段和实现阶段,前者是对样本进行特征选择,寻找分...

模式识别是一种从大量信息和数据出发,在专家经验和已有认识的基础上,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别的过程。模式识别包括相互关联的两个阶段,即学习阶段和实现阶段,前者是对样本进行特征选择,寻找分类的规律,后者是根据分类规律对未知样本集进行分类和识别。广义的模式识别属计算机科学中智能模拟的研究范畴,内容非常广泛,包括声音和语言识别、文字识别、指纹识别、声纳信号和地震信号分析、照片图片分析、化学模式识别等等。计算机模式识别实现了部分脑力劳动自动化。

模式识别--对表征事物或现象的各种形式的(数值的,文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。

模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、文字、符号、三位物体和景物以及各种可以用物理的、化学的、生物的传感器对对象进行测量的具体模式进行分类和辨识。

模式识别问题指的是对一系列过程或事件的分类与描述,具有某些相类似的性质的过程或事件就分为一类。模式识别问题一般可以应用以下4种方法进行分析处理。

统计模式识别方法:统计模式识别方法是受数学中的决策理论的启发而产生的一种识别方法,它一般假定被识别的对象或经过特征提取向量是符合一定分布规律的随机变量。其基本思想是将特征提取阶段得到的特征向量定义在一个特征空间中,这个空间包含了所有的特征向量,不同的特征向量,或者说不同类别的对象都对应于空间中的一点。在分类阶段,则利用统计决策的原理对特征空间进行划分,从而达到识别不同特征的对象的目的。统计模式识别中个应用的统计决策分类理论相对比较成熟,研究的重点是特征提取。

人工神经网络模式识别:人工神经网络的研究起源于对生物神经系统的研究。人工神经网络区别于其他识别方法的最大特点是它对待识别的对象不要求有太多的分析与了解,具有一定的智能化处理的特点。

句法结构模式识别:句法结构模式识别着眼于对待识别对象的结构特征的描述。

在上述4种算法中,统计模式识别是最经典的分类识别方法,在图像模式识别中有着非常广泛的应用。

模式识别研究方向

模式识别研究主要集中在两方面,即研究生物体(包括人)是如何感知对象的,属于认知科学的范畴,以及在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作着近几十年来的努力,已经取得了系统的研究成果。

一个计算机模式识别系统基本上事有三部分组成的,即数据采集、数据处理和分类决策或模型匹配。任何一种模式识别方法都首先要通过各种传感器把被研究对象的各种物理变量转换为计算机可以接受的数值或符号(串)集合。习惯上,称这种数值或符号(串)所组成的空间为模式空间。为了从这些数字或符号(串)中抽取出对识别有效的信息,必须对它进行处理,其中包括消除噪声,排除不相干的信号以及与对象的性质和采用的识别方法密切相关的特征的计算(如表征物体的形状、周长、面积等等)以及必要的变换(如为得到信号功率谱所进行的快速傅里叶变换)等。然后通过特征选择和提取或基元选择形成模式的特征空间。以后的模式分类或模型匹配就在特征空间的基础上进行。系统的输出或者是对象所属的类型或者是模型数据库中与对象最相似的模型编号。针对不同应用目的,这三部分的内容可以有很大的差别,特别是在数据处理和识别这两部分,为了提高识别结果的可靠性往往需要加入知识库(规则)以对可能产生的错误进行修正,或通过引入限制条件大大缩小待识别模式在模型库中的搜索空间,以减少匹配计算量。在某些具体应用中,如机器视觉,除了要给出被识别对象是什么物体外,还要求出该物体所处的位置和姿态以引导机器人的工作。

模式识别在实际中的应用

模式识别已经在天气预报、卫星航空图片解释、工业产品检测、字符识别、语音识别、指纹识别、医学图像分析等许多方面得到了成功的应用。所有这些应用都是和问题的性质密切不可分的,至今还没有发展成统一的、有效的可应用于所有的模式识别的理论。当前的一种普遍看法是不存在对所有的模式识别问题都使用的单一模型和解决识别问题的单一技术,我们现在拥有的是一个工具袋,我们所要做的是结合具体问题把统计的和句法(结构)的识别方法结合起来,把统计模式识别或句法模式识别与人工智能中的启发式搜索结合起来,把人工神经元网络与各种以有技术以及人工智能中的专家系统,不确定方法结合起来,深入掌握各种工具的效能和应用的可能性,互相取长补短,开创模式识别应用的新局面。


赞助本站

相关内容
AiLab云推荐
推荐内容
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港