展会信息港展会大全

人工神经网络matlab源程序代码
来源:互联网   发布日期:2011-11-23 22:55:45   浏览:36096次  

导读:人工神经网络 matlab 源程序代码 %产生指定类别的样本点,并在图中绘出 X = [0 1; 0 1]; % 限制类中心的范围 clusters = 5; % 指定类别数目 points = 10; % 指定每一类的点的数目 std_dev = 0.05; % 每一类的标准差 P = nngenc(X,clusters,points,std_dev);...

人工神经网络 matlab 源程序代码

%产生指定类别的样本点,并在图中绘出
X = [0 1; 0 1]; % 限制类中心的范围
clusters = 5; % 指定类别数目
points = 10; % 指定每一类的点的数目
std_dev = 0.05; % 每一类的标准差
P = nngenc(X,clusters,points,std_dev);
plot(P(1,:),P(2,:),'+r');
title('输入样本向量');
xlabel('p(1)');
ylabel('p(2)');
%建立网络
net=newc([0 1;0 1],5,0.1); %设置神经元数目为5
%得到网络权值,并在图上绘出
figure;
plot(P(1,:),P(2,:),'+r');
w=net.iw{1}
hold on;
plot(w(:,1),w(:,2),'ob');
hold off;
title('输入样本向量及初始权值');
xlabel('p(1)');
ylabel('p(2)');
figure;
plot(P(1,:),P(2,:),'+r');
hold on;
%训练网络
net.trainParam.epochs=7;
net=init(net);
net=train(net,P);
%得到训练后的网络权值,并在图上绘出
w=net.iw{1}
plot(w(:,1),w(:,2),'ob');
hold off;
title('输入样本向量及更新后的权值');
xlabel('p(1)');
ylabel('p(2)');
a=0;
p = [0.6 ;0.8];
a=sim(net,p)
-------------------

example8_2

%随机生成1000个二维向量,作为样本,并绘出其分布
P = rands(2,1000);
plot(P(1,:),P(2,:),'+r')
title('初始随机样本点分布');
xlabel('P(1)');
ylabel('P(2)');
%建立网络,得到初始权值
net=newsom([0 1; 0 1],[5 6]);
w1_init=net.iw{1,1}
%绘出初始权值分布图
figure;
plotsom(w1_init,net.layers{1}.distances)
%分别对不同的步长,训练网络,绘出相应的权值分布图
for i=10:30:100
net.trainParam.epochs=i;
net=train(net,P);
figure;
plotsom(net.iw{1,1},net.layers{1}.distances)
end
%对于训练好的网络,选择特定的输入向量,得到网络的输出结果
p=[0.5;0.3];
a=0;
a = sim(net,p)
--------------------------

example8_3

%指定输入二维向量及其类别
P = [-3 -2 -2 0 0 0 0 +2 +2 +3;
0 +1 -1 +2 +1 -1 -2 +1 -1 0];
C = [1 1 1 2 2 2 2 1 1 1];
%将这些类别转换成学习向量量化网络使用的目标向量
T = ind2vec(C)
%用不同的颜色,绘出这些输入向量
plotvec(P,C),
title('输入二维向量');
xlabel('P(1)');
ylabel('P(2)');
%建立网络
net = newlvq(minmax(P),4,[.6 .4],0.1);
%在同一幅图上绘出输入向量及初始权重向量
figure;
plotvec(P,C)
hold on
W1=net.iw{1};
plot(W1(1,1),W1(1,2),'ow')
title('输入以及权重向量');
xlabel('P(1), W(1)');
ylabel('P(2), W(2)');
hold off;
%训练网络,并再次绘出权重向量
figure;
plotvec(P,C);
hold on;
net.trainParam.epochs=150;
net.trainParam.show=Inf;
net=train(net,P,T);
plotvec(net.iw{1}',vec2ind(net.lw{2}),'o');
%对于一个特定的点,得到网络的输出
p = [0.8; 0.3];
a = vec2ind(sim(net,p))

赞助本站

AiLab云推荐
展开

热门栏目HotCates

Copyright © 2010-2025 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港