Foreword vii
Preface ix
Chapter1 Introduction
1.1 What Motivated Data Mining? Why Is It Important?
1.2 So, What Is Data Mining?
1.3 Data Mining-On What Kind of Data?
1.3.1 Relational Databases
1.3.2 Data Warehouses
1.3.3 TransactionalDatabases
1.3.4 Advanced Data and Information Systems and Advanced Applications
1.4 Data Mining Functionalities---What Kinds of Patterns Can Be Mined?
1.4.1 Concept/Class Description: Characterization and Discrimination
1.4.2 Mining Frequent Patterns, Associations, and Correlations
1.4.3 Classification and Prediction 24 1.4.4 Cluster Analysis
1.4.5 Outlier Analysis 26 1.4.6 Evolution Analysis
1.5 Are All of the Patterns Interesting?
1.6 Classification of Data Mining Systems
1.7 Data Mining Task Primitives
1.8 Integration of a Data Mining System with a Database or Data Warehouse System
1.9 Major Issues in Data Mining
1.10 Summary
Exercises
Bibliographic Notes
Chapter2 Data Preprocessing
2.1 Why Preprocess the Data?
2.2 Descriptive Data Summarization
2.2.1 Measuring the Central Tendency
2.2.2 Measuring the Dispersion of Data
2.2.3 Graphic Displays of Basic Descriptive Data Summaries
2.3 Data Cleaning
2.3.1 Missing Values
2.3.2 Noisy Data
2.3.3 Data Cleaning as a Process
2.4 Data Integration and Transformation
2.4.1 Data Integration
2.4.2 Data Transformation
2.5 Data Reduction
2.5.1 Data Cube Aggregation
2.5.2 Attribute Subset Selection
2.5.3 DimensionalityReduction
2.5.4 Numerosity Reduction
2.6 Data Discretization and Concept Hierarchy Generation
2.6.1 Discretization and Concept Hierarchy Generation for Numerical Data
2.6.2 Concept Hierarchy Generation for Categorical Data
2.7 Summary 97 Exercises 97 Bibliographic Notes
Chapter3 Data Warehouse and OLAP Technology: An Overview
3.1 What Is a Data Warehouse?
3.1.1 Differences between Operational Database Systems and Data Warehouses
3.1.2 But, Why Have a Separate Data Warehouse?
3.2 A Multidimensional Data Model
3.2.1 From Tables and Spreadsheets to Data Cubes
3.2.2 Stars, Snowflakes, and Fact Constellations: Schemas for Multidimensional Databases
3.2.3 Examples for Defining Star, Snowflake, and Fact Constellation Schemas
……
Chapter4 Data Cube Computation and Data Generalization
Chapter5 Mining Frequent Patterns, Associations, and Correlations
Chapter6 Classification adn Predidction
Chapter7 Cluster Analysis
Chapter8 Mining Stream, Time-Series, and Sepuence Data
Chapter9 Graph Mining, Social Network Analysis, and Multirelational
Chapter10 Mining Object, Spatial, Multimedia, Test, and Wed Data
Chapter11 Applications and Trends in Data Mining
An Introduction to Microsofts OLE DB for
Bibliography
Index
《数据挖掘:概念与技术(英文版·第2版)》((加)韩家炜,等
来源:互联网 发布日期:2011-10-01 17:02:02 浏览:14974次
导读:数据挖掘:概念与技术(英文版·第2版)作者:(加)韩家炜,等机械工业出版社出版,京东编程语言与程序设计图书网购,折扣超低。...
相关热词: 数据挖掘:概念与技术(英文版·第2版) (加)韩家炜,等 机
相关内容
- “世界模型”或成AI下一个“必争之地”,英伟达、谷歌双双下场
- AI爆火两年,技术飞快跑,大模型突破商业化困局了吗?
- AI智能体爆发,8亿岗位即将消失!2030年可抢走70%办公室白领饭碗
- AAAI 2025 | IML领域首个稀疏化视觉Transformer,代码已开源
- 2025生成式AI平台交互体验观察(大语言模型篇)
- GPT-4o最自私,Claude更慷慨!DeepMind发布全新“AI道德测试”
- 2024硅谷AI年度总结:从英伟达到OpenAI,这一年都发生了什么?
- AI唱主角的CES 2025:黄仁勋打头阵,落地应用成关键年
- 追逐AI风口,在不确定中寻找确定性
- 美媒纳闷:芯片限制下,中国怎么还能在AI领域取得这么大进展?
AiLab云推荐
最新资讯
- 美媒纳闷:芯片限制下,中国怎么还能在AI领域取得这么大进展?
- 三问“AI 2025”,五款大模型这样说
- 微软开源140亿参数小语言AI模型Phi-4,性能比肩 GPT-4o Mini
- 大力发展人工智能,科创AI,未来已来
- 在生成式AI时代“抱团取暖”:全球两大视觉内容巨头宣布合并,37亿美元图库巨头或将诞生
- 视觉模型训练成本一年下降80%,中国AI厂商“掀起”全球算力降价潮
- GPT-4o最自私,Claude更慷慨!DeepMind发布全新“AI道德测试”
- 北京智源发布2025年AI十大趋势:世界模型有望成多模态大模型下一步
- 智源研究院发布2025十大AI技术趋势
- AAAI 2025 | 大模型推理加速新范式:加速比高达3.51倍、成本降至1/3
本月热点
热门排行
-
马斯克的xAI连发两款新模型,有进步但还谈不上领先
阅读量:90897
-
科学家揭示数据驱动型大模型的三大问题,并指出发展多语言AI的紧迫性
阅读量:7097
-
机构看衰、专家批评项目艰难,大语言模型会不会成为即将破碎的AI泡沫?
阅读量:6937
-
大模型落地路线图研究报告:大模型推动“人工智能+”高质量发展
阅读量:6355
-
人工智能对材料科学研究有哪些深远影响?谢建新院士分享
阅读量:6267
-
这个会议一天提及AI 500次,最后的结论是什么?
阅读量:6115