导读: 提 要 介绍了人工神经网络方法,建立了森林资源管理的三层前馈反向传播神经网络模型,并与 Logistic 函数进行了比较。仿真结果表明,人工神经网络模型优于 Logistic 模型,可应用于森林资源动态模拟。 关键词 人工神经网络 森林资源管理 BP模型 分 类 中图法...
提 要 介绍了人工神经网络方法,建立了森林资源管理的三层前馈反向传播神经网络模型,并与 Logistic 函数进行了比较。仿真结果表明,人工神经网络模型优于 Logistic 模型,可应用于森林资源动态模拟。 关键词 人工神经网络 森林资源管理 BP模型 分 类 中图法 TP18 F307.2 森林资源管理一直是林业科学管理的最重要的组成部分,几乎直接或间接地影响到林业及其相关行业的各个方面。林业的持续经营与发展必须实现可持续的森林资源管理。为此,广大林业科技工作者就此进行了广泛的森林资源管理的模型研究[1],以服务于森林资源的科学管理和持续经营。但大多数采用 Logistic 模型模拟森林资源动态,而森林资源动态变化过程实质上是一个非线性映射过程,因此,本文首次提出应用人工神经网络建立输入量(林龄)与输出量(单位面积蓄积量)之间的非线性映射关系,这将为森林资源管理提供一种新的模拟分析方法。 1 人工神经网络理论 人工神经网络 (ANN) 是由大量简单元件(神经元、模拟电子元件、光学元件
等 ) 广泛相互联接而成的复杂网络系统,它是在现代神经学研究成果基础上提出的,能模拟人的若干基本功能。它具有并行分布的信息处理结构,是通过“学习”或“训练”的方式完成某一特定的工作。其最显著的特点是具有自学习能力,并在数据含有噪音、缺项或缺乏认知时能获得令人满意的结论,特别是它可以从积累的工作实例中学习知识,尽可能多地把各种定新性定量的影响因素作为变量加以输入,建立各影响因素与结论之间的高非线性映射,采用自适应模式识别方法完成测工作。它对处理内部规不甚了解、不能用一组规则或方程进型描述的较复杂问题或开放的系统显得较为优。目前应用最光泛的 ANN 模型是 BP 模型是由 Rumelhart 等人组成的 PDP 小组与 1985 年提出的一种神经元模型,其结构如图 1。理论已经证明一个三层的 BP 网络模型能够实现任意的连续映射[3]。