智能算法的经典——遗传算法的一个实现程序 (2008-09-10 14:58:22)
标签: 智能算法 遗传算法 ga 程序 it 分类: 技术分享
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define POPSIZE 50 //种群大小,可以自定义
#define MAXGENS 1000
#define NVARS 3
#define PXOVER 0.8 //交叉概率
#define PMUTATION 0.2 //变异概率
#define TRUE 1
#define FALSE 0
int generation;
int cur_best;
FILE*gaout;
struct
genotype
{
double
gene[NVARS];
double
fitness;
//定义适应值
double
upper[NVARS]; //可行解的上界
double
lower[NVARS]; //可行解的下界
double
rfitness;
//相对概率
double
cfitness;
//累加概率
};
struct genotype pop[POPSIZE+1]; //population当前种群
struct genotype newpop[POPSIZE+1];//new population新种群,即子代
void initialize(void);
double randval(double,double);
void evaluate(void);
void keep_the_best(void);
void elitist(void);
void gaselect(void);
void crossover(void);
void xover(int,int);
void swap(double*,double*);
void mutate(void);
void report(void);
void main()
{
int i;
clock_t start,end;
start=clock();
if((gaout=fopen("gaout.txt","w"))==NULL)//打开同一目录下的文件
{
printf("can not open the
gaout.txt!\n");
exit(1);
}
generation=0;
fprintf(gaout,"\n generation
best average
standard \n");
fprintf(gaout,"\n
number
value fitness
deviation\n");
initialize();
evaluate();
keep_the_best();
while(generation<MAXGENS)
{
report();
generation++;
gaselect();
crossover();
mutate();
evaluate();
elitist();
}
fprintf(gaout,"\n \nSimulation
completed\n");
fprintf(gaout,"\n Best
member:\n");
for(i=0;i<NVARS;i++)
fprintf(gaout,"\n
var(%d)=%3.3f",i,pop[POPSIZE].gene[i]);
fprintf(gaout,"\n\nBest
fitness=%3.3f",pop[POPSIZE].fitness);
end=clock();
fprintf(gaout,"\nthe time it takes
%lf:",1.0*(end-start)/CLK_TCK);
fclose(gaout);
printf("Success!\n");
}
void initialize(void)
{
FILE*infile;
int i,j;
double lbound,ubound;
if((infile=fopen("gadata.txt","r"))==NULL)
{
fprintf(gaout,"\n找不到初始文件!\n");
exit(1);
}
//initialize variables within the
bounds;
for(i=0;i<NVARS;i++)
{
fscanf(infile,"%lf",&lbound);
fscanf(infile,"%lf",&ubound);
fprintf(gaout,"The lower bound of var[%d]=%lf\n",i,lbound);
fprintf(gaout,"The upper bound of var[%d]=%lf\n",i,ubound);
for(j=0;j<POPSIZE;j++)
{
pop[j].fitness=0;
pop[j].rfitness=0;
pop[j].cfitness=0;
pop[j].lower[i]=lbound;
pop[j].upper[i]=ubound;
pop[j].gene[i]=randval(pop[j].lower[i],pop[j].upper[i]);
}
}
fclose(infile);
}
double randval(double low,double high)
{
double val;
val=((double)(rand()%1001)/1000.0)*(high-low)+low;//产生从上界到下界之间的随机数
return(val);
}
void evaluate(void)
{
int mem;
int i;
double x[NVARS+1];
fprintf(gaout,"gen=%d\n\n",generation);
for(mem=0;mem<POPSIZE;mem++)
{
for(i=0;i<NVARS;i++)
{
x[i+1]=pop[mem].gene[i];
//fprintf(gaout,"pop[%d].gene[%d]=%lf\n",mem,i,pop[mem].gene[i]);
}
pop[mem].fitness=(x[1]*x[1])-(x[1]*x[2])+x[3];
//fprintf(gaout,"pop[%d].fitness=%lf\n\n",mem,pop[mem].fitness);
}
}
void keep_the_best(void)
{
int mem;
int i;
cur_best=0;//stores the index of the best
individule;
pop[POPSIZE].fitness=0;
for(mem=0;mem<POPSIZE;mem++)
{
if(pop[mem].fitness>pop[POPSIZE].fitness)
{
cur_best=mem;
}
}
pop[POPSIZE].fitness=pop[cur_best].fitness;
//copy the best;
for(i=0;i<NVARS;i++)
pop[POPSIZE].gene[i]=pop[cur_best].gene[i];
//fprintf(gaout,"The best of 0 =
%d\n",cur_best);
}
//the best member of the previous generation is stored as the last
in the array; if the best of the current
//generation is worse than the best of the previous ,the latter one
would replace the forer.
void elitist(void)
{
int i;
double best,worst;
int best_mem,worst_mem;
best=pop[0].fitness;
worst=pop[0].fitness;
for(i=0;i<POPSIZE-1;i++)
{
if(pop[i].fitness>pop[i+1].fitness)
{
if(pop[i].fitness>=best)
{
best=pop[i].fitness;
best_mem=i;
}
if(pop[i+1].fitness<=worst)
{
worst=pop[i+1].fitness;
worst_mem=i+1;
}
}
else
{
if(pop[i].fitness<=worst)
{
worst=pop[i+1].fitness;
worst_mem=i;
}
if(pop[i+1].fitness>=best)
{
best=pop[i+1].fitness;
best_mem=i+1;
}
}
}
if(best>=pop[POPSIZE].fitness)
{
for(i=0;i<NVARS;i++)
pop[POPSIZE].gene[i]=pop[best_mem].gene[i];
pop[POPSIZE].fitness=pop[best_mem].fitness;
}
else
{
for(i=0;i<NVARS;i++)
pop[worst_mem].gene[i]=pop[best_mem].gene[i];
pop[worst_mem].fitness=pop[best_mem].fitness;
}
}
void gaselect(void)
{
int mem,i,j;
double sum=0;
double p;
//the total
fitness;
for(mem=0;mem<POPSIZE;mem++)
{
sum+=pop[mem].fitness;
}
//rfitness;
pop[0].cfitness=pop[0].rfitness;
for(mem=0;mem<POPSIZE;mem++)
{
pop[mem].rfitness=pop[mem].fitness/sum;
}
//cfitness;
for(mem=1;mem<POPSIZE;mem++)
{
pop[mem].cfitness=pop[mem-1].cfitness+pop[mem].rfitness;
}
for(i=0;i<POPSIZE;i++)
{
p=rand()%1000/1000.0;
if(p<pop[0].cfitness)
{
//if(generation==10)
// fprintf(gaout,"newpop[i]
is pop[0]!\n",i);
newpop[i]=pop[0];
}
else
{
for(j=0;j<POPSIZE-1;j++)
{
if(p>=pop[j].cfitness&&p<=pop[j+1].cfitness)
{
newpop[i]=pop[j+1];
break;
}
}
//if(generation==10)
// fprintf(gaout,"newpop[%d]
is pop[%d]!\n",i,j+1);//
}
}
//copy the newpop;
for(i=0;i<POPSIZE;i++)
{
pop[i]=newpop[i];
}
}
//a single point crossover;
void crossover(void)
{
int mem,one;
int first=0; //count the number of members
chosen;
double x;
for(mem=0;mem<POPSIZE;++mem)
{
x=rand()%1000/1000.0;
if(x<PXOVER)
{
++first;
if(first%2==0)//当有两个个体的交叉概率p满足条件以后,就将其进行交叉
xover(one,mem);
else
one=mem;
}
}
}
void xover(int one,int two)
{
int i;
int point; //crossover
point;
//select crossover point;
if(NVARS>1)
{
if(NVARS==2)
point=1;
else
point=(rand()%(NVARS-1))+1;
for(i=0;i<point;i++)//将point
之前的直进行交换;
swap(&pop[one].gene[i],&pop[two].gene[i]);
}
}
void swap(double*x,double*y)
{
double temp;
temp=*x;
*x=*y;
*y=temp;
}
void mutate(void)
{
int i,j;
double lbound,hbound;
double x;
for(i=0;i<POPSIZE;i++)
for(j=0;j<NVARS;j++)
{
x=((rand()%1000)/1000.0);
if
(x<PMUTATION)
{
//found the
bounds on the variable to be mutated;
lbound=pop[i].lower[j];
hbound=pop[i].upper[j];
pop[i].gene[j]=randval(lbound,hbound);//给出一个新的直;
}
}
}
void report(void)
{
int i;
double best_val;
double avg;
double stddev ;//std.deviation of population
fitness;
double sum_square; //sum of
square for std.calc,平方和
double square_sum; //square of
sum for std.calc 和的平方;
double sum;
sum=0.0;
sum_square=0.0;
for(i=0;i<POPSIZE;i++)
{
sum+=pop[i].fitness;
sum_square+=pop[i].fitness*pop[i].fitness;
}
avg=sum/(double)POPSIZE;
square_sum=avg*avg*(double)POPSIZE;
stddev=sqrt((sum_square-square_sum)/(POPSIZE-1));
best_val=pop[POPSIZE].fitness;
fprintf(gaout,"\n%5d,
%6.3f,%6.3f,%6.3f\n\n",generation,best_val,avg,stddev);
}
分享
顶
阅读┊ ┊ ┊┊ ┊打印┊
已投稿到:
排行榜 圈子
加载中,请稍候......
前一篇:解放思想的一个任务是消除“文革心理”
后一篇:中秋月,美在岳麓山
评论 重要提示:警惕虚假中奖信息 在插画中找寻曾经的美好 关注每日最热门博客
发评论 旅游行摄,轻品日本 是谁改变了你的博客? 关注每日最热门博客
登录名: 密码: 找回密码 注册
昵 称:
验证码: 请点击后输入验证码
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。
< 前一篇解放思想的一个任务是消除“文革心理”
后一篇 >中秋月,美在岳麓山