展会信息港展会大全

人工智能在电气传动中运用的进展(专业论文下载) (第5页)
来源:互联网   发布日期:2011-09-28 19:09:48   浏览:6736次  

导读:人工智能在电气传动中运用的进展(专业论文下载) (第5页)...

大可观测速度增量。这就需要ANN学习三维图形映射。该系统与常规控制算法(梯形控制法)相比具有更好的性能,并且大大减少了定位时间,对负载转矩的大范围变化和非初始速度也有满意的控制效果。文献(34)用两个ANNS控制和辩识感应电机,但只给出了仿真研究。这是第一篇讨论神经网络在感应电机控制中的应用,这个方案与3.1节中讨论的直流驱动方案类似,ANNS的结构是多层前馈型,运用常规反向传播学习算法。该系统由两个子系统构成,一个系统通过电气动态参数的辩识自适应控制定子电流,另一个系统通过对机电系统参数的辩识自适应控制转子速度。该文讨论了这些控制方案与常规方案的各种优点。
   文献(35)讨论了基于人工神经网络的电气机械系统,文献(36)介绍了运用直接控制ANN观测电压源PWM供电的感应电机矢量控制系统中的磁通的方法。这种基于ANN的磁通观测器的主要优点是对谐波具有免疫性。ANN是使用反向传播学习算法的多层前馈类型。ANN观测的磁通具有振荡性,因而引起转矩振荡。如果用别的方法,可能得到更好的结果。
   最后值得指出的是现在发表的大多数有关ANN对各种电机参数估计的论文,一个共同的特点是,它们都是用多层前馈ANNS,用常规反向传播算法,只是学习算法的模型不同或被估计的参数不同。

四、结论

本文试图对人工智能电气传动控制系统领域的进展做一回顾。内容涉及模糊控制、神经网络、模糊神经网络在电气传动系统中的应用,讨论了模糊、神经和模糊神经控制器等人工智能技术的优点。也讨论了人工智能最小配置的应用。但到目前为止,使用人工智能技术的变速传动工业产品才刚刚出现,只有两家公司推出他们的产品。虽然使用人工智能技术的实际产品和应用还不多,但不久的将来,人工智能技术在电气传动领域将会取得重要的地位,特别是自适应模糊神经控制器将在高性能驱动产品中得到广泛使用。

赞助本站

AiLab云推荐
展开

热门栏目HotCates

Copyright © 2010-2025 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港