展会信息港展会大全

哈工大信息检索研究中心论坛
来源:互联网   发布日期:2011-09-19 14:24:19   浏览:7602次  

导读:哈工大信息检索研究中心论坛 一、图林与人工智能 介绍人工智能, 不能不从图林说起。英国著名学者 阿兰·图林(A. Turing) 不仅以“纸上下棋机”率先探讨了下...

一、图林与人工智能
  介绍人工智能, 不能不从图林说起。英国著名学者 阿兰·图林(A. Turing) 不仅以“纸上下棋机”率先探讨了下棋与机器智能的联系,他还是举世公认的“人工智能之父”。
  图林的一生充满着未解之谜,他就象上天派往下界的神祗 ,匆匆而来,又匆匆而去,为人间留下了智慧,留下了深邃的思想,后人必须为之思索几十年甚至几百年。
  许多文献甚至提出,图林不仅是“人工智能之父”,他也是“计算机之父”。曾担任过冯·诺依曼助手的美国学者弗兰克尔这样写到:“许多人都推举冯·诺依曼为‘计算机之父',然而我确信他本人从来不会促成这个错误。或许,他可以被恰当地称为助产士,但是他曾向我,并且我肯定他也曾向别人坚决强调:如果不考虑巴贝奇、阿达和其他人早先提出的有关概念,计算机的基本概念属于图林。”
  正是冯·诺依曼本人亲手把“计算机之父”的桂冠转戴在图林头上。直到现在,计算机界仍有个一年一度“图林奖” ,由美国计算机学会(ACM)颁发给世界上最优秀的电脑科学家,像科学界的诺贝尔奖金那样,是电脑领域的最高荣誉。阿兰·图林以其独特的洞察力提出了大量有价值的理论思想,似乎都成为计算机发展史不断追逐的目标,不断地被以后的发展证明其正确性。
  图林1912年6月23日出生于英国伦敦,孩提时代性格活泼好动。3岁那年,他进行了在科学实验方面的首次尝试──把玩具木头人的胳膊掰下来种植到花园里,想让它们长成更多的木头人。 8岁时,图林尝试着写了一部科学著作,题名《关于一种显微镜》,这个小孩虽然连单词都拼错了许多,但毕竟写得还像那么回事。在书的开头和结尾,图林都用同一句话“首先你必须知道光是直的”前后呼应,但中间的内容很短很短,可谓短得破了科学著作的纪录。
  1931年,图林考入英国剑桥皇家学院。大学毕业后留校任教,不到一年,他就发表了几篇很有份量的数学论文,被选为皇家学院最年轻的研究员,年仅22岁。1937年,伦敦权威的数学杂志又收到图林一篇论文《论可计算数及其在判定问题中的应用》,作为阐明现代电脑原理的开山之作,被永远载入了计算机的发展史册。这篇论文原本是为了解决一个基础性的数学问题:是否只要给人以足够的时间演算,数学函数都能够通过有限次机械步骤求得解答?传统数学家当然只会想到用公式推导证明它是否成立,可是图林独辟蹊径地想出了一台冥冥之中的机器。
  图林想象的机器说起来很简单:该计算机使用一条无限长度的纸带,纸带被划分成许多方格,有的方格被画上斜线,代表“1”;有的没有画任何线条,代表“0”。该计算机有一个读写头部件,可以从带子上读出信息,也可以往空方格里写下信息。该计算机仅有的功能是:把纸带向右移动一格,然后把“1”变成“0”,或者相反把“0”变成“1”。
  图林设计的“理想计算机”被后人称为“图林机”,实际上是一种不考虑硬件状态的计算机逻辑结构。图林还提出可以设计出另一种“万能图林机”,用来模拟其它任何一台“图林机”工作,从而首创了通用计算机的原始模型。图林甚至还想到把程序和数据都储存在纸带上,比冯·诺依曼更早提出了“储存程序”的概念。
  阿兰·图林对计算机科学的贡献也并非停留在“纸上谈兵”。在第二次世界大战期间,图林应征入伍,在战时英国情报中心“布雷契莱庄园”(Bletchiy)从事破译德军密码的工作,与战友们一起制作了第一台密码破译机。在图林理论指导下,这个“庄园”后来还  研制出破译密码的专用电子管计算机“巨人”(Colossus),在盟军诺曼底登陆等战役中立下了丰功伟绩。
  1945年,脱下军装的图林,带着大英帝国授予的最高荣誉勋章,被录用为泰丁顿国家物理研究所高级研究员。由于有了布雷契莱的实践,他提交了一份“自动计算机”的设计方案,领导一批优秀的电子工程师,着手制造一种名叫ACE的电脑。1950年, ACE电脑样机 公开表演,被认为是当时世界上最快最强有力的电子计算机之一。
  1950年,图林来到曼彻斯特大学任教,并被指定为该大学自动计算机项目的负责人。就在这年10月, 他的又一篇划时代论文《计算机与智能》 发表。这篇文章后来被改名为《机器能思维吗?》,它引来的惊雷,今天还在震撼着电脑的世纪。在“第一代电脑”占统治地位的时期,这篇论文甚至可以作为“第五代电脑”和“第六代电脑”的宣言书。
  图林写道:你无法制造一台替你思考的机器,这是人们一般会毫无疑义接受下来的老生长谈。我的论点是:与人脑的活动方式极为相似的机器是可以制造出来的。更有趣的是,图林还设计了一个“图林试验”,试图通过让机器模仿人回答某些问题,判断它是否具备智能。图林试验采用“问”与“答”模式,即观察者通过控制打字机向两个试验对象通话,其中一个是人,另一个是机器。要求观察者不断提出各种问题,从而辨别回答者是人还是机器。图林还为这项试验亲自拟定了几个示范性问题:
  问: 请给我写出有关“第四号桥”主题的十四行诗。
  答:不要问我这道题,我从来不会写诗。
  问:34957加70764等于多少?
  答:(停30秒后)105721
  问:你会下国际象棋吗?
  答:是的。
  问:我在我的K1处有棋子K;你仅在K6处有棋子K,在R1处有棋子R。现在轮到你走,你应该下那步棋?
  答:(停15秒钟后)棋子R走到R8处,将军!
  图林指出:“如果机器在某些现实的条件下,能够非常好地模仿人回答问题,以至提问者在相当长时间里误认它不是机器,那么机器就可以被认为是能够思维的。”
  从表面上看,要使机器回答按一定范围提出的问题似乎没有什么困难,可以通过编制特殊的程序来实现。然而,如果提问者并不遵循常规标准,编制回答的程序是极其困难的事情。例如,提问与回答呈现出下列状况:
  问:你会下国际象棋吗?
  答:是的。
  问:你会下国际象棋吗?
  答:是的。
  问:请再次回答,你会下国际象棋吗?
  答:是的。
  你多半会想到,面前的这位是一部笨机器。如果提问与回答呈现出另一种状态:
  问: 你会下国际象棋吗?
  答:是的。
  问:你会下国际象棋吗?
  答:是的,我不是已经说过了吗?
  问:请再次回答,你会下国际象棋吗?
  答:你烦不烦,干嘛老提同样的问题。
  那么,你面前的这位,大概是人而不是机器。上述两种对话的区别在于,第一种可明显地感到回答者是从知识库里提取简单的答案,第二种则具有分析综合的能力,回答者知道观察者在反复提出同样

赞助本站

AiLab云推荐
推荐内容
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港