展会信息港展会大全

C++实现的BP神经网络(代码)
来源:互联网   发布日期:2011-09-19 14:02:27   浏览:24119次  

导读:C++实现的BP神经网络(代码)...

C++实现的BP神经网络(代码)

来源:天新网-开发中心 发布日期: 2009-06-18

 #pragma   hdrstop
#include   <stdio.h>
#include   <iostream.h>

  const   A=30.0;
  const   B=10.0;
  const   MAX=500;               //最大训练次数
  const   COEF=0.0035;   //网络的学习效率
  const   BCOEF=0.001;//网络的阀值调整效率
  const   ERROR=0.002     ;   //   网络训练中的允许误差
  const   ACCURACY=0.0005;//网络要求精度
  double   sample[41][4]={{0,0,0,0},{5,1,4,19.020},{5,3,3,14.150},
                                                          {5,5,2,14.360},{5,3,3,14.150},{5,3,2,15.390},
                                                          {5,3,2,15.390},{5,5,1,19.680},{5,1,2,21.060},
                                                          {5,3,3,14.150},{5,5,4,12.680},{5,5,2,14.360},
                                                          {5,1,3,19.610},{5,3,4,13.650},{5,5,5,12.430},
                                                          {5,1,4,19.020},{5,1,4,19.020},{5,3,5,13.390},
                                                          {5,5,4,12.680},{5,1,3,19.610},{5,3,2,15.390},
                                                          {1,3,1,11.110},{1,5,2,6.521},{1,1,3,10.190},
                                                          {1,3,4,6.043},{1,5,5,5.242},{1,5,3,5.724},
                                                          {1,1,4,9.766},{1,3,5,5.870},{1,5,4,5.406},
                                                          {1,1,3,10.190},{1,1,5,9.545},{1,3,4,6.043},
                                                          {1,5,3,5.724},{1,1,2,11.250},{1,3,1,11.110},
                                                          {1,3,3,6.380},{1,5,2,6.521},{1,1,1,16.000},
                                                          {1,3,2,7.219},{1,5,3,5.724}};


  double   w[4][10][10],wc[4][10][10],b[4][10],bc[4][10];
  double   o[4][10],netin[4][10],d[4][10],differ;//单个样本的误差
  double   is;   //全体样本均方差
  int   count,a;

  void   netout(int   m,   int   n);//计算网络隐含层和输出层的输出
  void   calculd(int   m,int   n);   //计算网络的反向传播误差
  void   calcalwc(int   m,int   n);//计算网络权值的调整量
  void   calcaulbc(int   m,int   n);   //计算网络阀值的调整量
  void   changew(int   m,int   n);   //调整网络权值
  void   changeb(int   m,int   n);//调整网络阀值
  void   clearwc(int   m,int   n);//清除网络权值变化量wc
  void   clearbc(int   m,int   n);//清除网络阀值变化量bc
  void   initialw(void);//初始化NN网络权值W
  void   initialb(void);   //初始化NN网络阀值
  void   calculdiffer(void);//计算NN网络单个样本误差
  void   calculis(void);//计算NN网络全体样本误差
  void   trainNN(void);//训练NN网络


  /*计算NN网络隐含层和输出层的输出   */
  void   netout(int   m,int   n)
  {
      int   i,j,k;

      //隐含层各节点的的输出
      for   (j=1,i=2;j<=m;j++)   //m为隐含层节点个数
      {
          netin[i][j]=0.0;
          for(k=1;k<=3;k++)//隐含层的每个节点均有三个输入变量
              netin[i][j]=netin[i][j]+o[i-1][k]*w[i][k][j];
          netin[i][j]=netin[i][j]-b[i][j];
        o[i][j]=A/(1+exp(-netin[i][j]/B));
      }

      //输出层各节点的输出
      for   (j=1,i=3;j<=n;j++)
      {
          netin[i][j]=0.0;
          for   (k=1;k<=m;k++)
              netin[i][j]=netin[i][j]+o[i-1][k]*w[i][k][j];
          netin[i][j]=netin[i][j]-b[i][j];
          o[i][j]=A/(1+exp(-netin[i][j]/B))   ;
      }
  }


  /*计算NN网络的反向传播误差*/
  void   calculd(int   m,int   n)
  {
        int   i,j,k;
        double   t;
        a=count-1;
      d[3][1]=(o[3][1]-sample[a][3])*(A/B)*exp(-netin[3][1]/B)/pow(1+exp(-netin[3][1]/B),2);

        //隐含层的误差
        for   (j=1,i=2;j<=m;j++)
        {
            t=0.00;
            for   (k=1;k<=n;k++)
                t=t+w[i+1][j][k]*d[i+1][k];
                  d[i][j]=t*(A/B)*exp(-netin[i][j]/B)/pow(1+exp(-netin[i][j]/B),2);
        }
  }


  /*计算网络权值W的调整量*/
  void   calculwc(int   m,int   n)
  {
      int   i,j,k;

    //   输出层(第三层)与隐含层(第二层)之间的连接权值的调整
      for   (i=1,k=3;i<=m;i++)
      {
          for   (j=1;j<=n;j++)
          {
              wc[k][i][j]=-COEF*d[k][j]*o[k-1][i]+0.5*wc[k][i][j];
          }
        //   printf("\n");
      }
      //隐含层与输入层之间的连接权值的调整
      for   (i=1,k=2;i<=m;i++)
      {
          for   (j=1;j<=m;j++)
          {
              wc[k][i][j]=-COEF*d[k][j]*o[k-1][i]+0.5*wc[k][i][j];
          }
      //     printf("\n");
      }

  }

  /*计算网络阀值的调整量*/
  void   calculbc(int   m,int   n)
  {
      int   j;
      for   (j=1;j<=m;j++)
      {
          bc[2][j]=BCOEF*d[2][j];
      }
      for   (j=1;j<=n;j++)
      {
          bc[3][j]=BCOEF*d[3][j];
      }
  }

  /*调整网络权值*/
  void   changw(int   m,int   n)
  {
      int   i,j;
      for   (i=1;i<=3;i++)
          for   (j=1;j<=m;j++)
          {
              w[2][i][j]=0.9*w[2][i][j]+wc[2][i][j];
              //为了保证系统有较好的鲁棒性,计算权值时乘惯性系数0.9
              printf("w[2][%d][%d]=%f\n",i,j,w[2][i][j]);
          }
      for   (i=1;i<=m;i++)
          for   (j=1;j<=n;j++)
          {
              w[3][i][j]=0.9*w[3][i][j]+wc[3][i][j];
              printf("w[3][%d][%d]=%f\n",i,j,w[3][i][j]);
          }
  }

  /*调整网络阀值*/
  void   changb(int   m,int   n)
  {
      int   j;
      for   (j=1;j<=m;j++)
          b[2][j]=b[2][j]+bc[2][j];

      for   (j=1;j<=n;j++)
          b[3][j]=b[3][j]+bc[3][j];
  }

  /*清除网络权值变化量wc*/
  void   clearwc(void)
  {
      for   (int   i=0;i<4;i++)
          for   (int   j=0;j<10;j++)
              for   (int   k=0;k<10;k++)
                  wc[i][j][k]=0.00;
  }

  /*清除网络阀值变化量*/
  void   clearbc(void)
  {
      for   (int   i=0;i<4;i++)
          for   (int   j=0;j<10;j++)
              bc[i][j]=0.00;
  }

  /*初始化网络权值W*/
  void   initialw(void)
  {
      int   i,j,k,x;
      double   weight;
      for   (i=0;i<4;i++)
          for   (j=0;j<10;j++)
              for   (k=0;k<10;k++)
              {
                  randomize();
                  x=100+random(400);
                  weight=(double)x/5000.00;
                  w[i][j][k]=weight;
              }
  }


  /*初始化网络阀值*/
  void   initialb(void)
  {
      int   i,j,x;
      double   fazhi;
      for   (i=0;i<4;i++)
        for   (j=0;j<10;j++)
        {
            randomize();
            for   (int   k=0;k<12;k++)
            {
                x=100+random(400);
            }
            fazhi=(double)x/50000.00;
            b[i][j]=fazhi;
        }
  }

  /*计算网络单个样本误差*/
  void   calculdiffer(void)
  {
      a=count-1;
      differ=0.5*(o[3][1]-sample[a][3])*(o[3][1]-sample[a][3]);
  }

  void   calculis(void)
  {
      int   i;
      is=0.0;
      for   (i=0;i<=19;i++)
      {
          o[1][1]=sample[i][0];
          o[1][2]=sample[i][1];
          o[1][3]=sample[i][2];
          netout(8,1);
          is=is+(o[3][1]-sample[i][3])*(o[3][1]-sample[i][3]);
      }
      is=is/20;
  }

  /*训练网络*/
  void   trainNN(void)
  {
      long   int   time;
      int   i,x[4];
      initialw();
      initialb();

      for   (time=1;time<=MAX;time++)
      {
          count=0;
          while(count<=40)
          {
              o[1][1]=sample[count][0];
              o[1][2]=sample[count][1];
              o[1][3]=sample[count][2];

              count=count+1;
              clearwc();
              clearbc();
              netout(8,1);
              calculdiffer();
              while(differ>ERROR)
              {
                  calculd(8,1);
                  calculwc(8,1);
                  calculbc(8,1);
                  changw(8,1);
                  changb(8,1);
                  netout(8,1);
                  calculdiffer();
              }
          }
          printf("This   is   %d   times   training   NN...\n",time);
          calculis();
          printf("is==%f\n",is);
          if   (is<ACCURACY)   break;
      }
  }










  //---------------------------------------------------------------------------

  #pragma   argsused
  int   main(int   argc,   char*   argv[])
  {
      double   result;
      int   m,test[4];
      char   ch='y';
      cout<<"Please   wait   for   the   train   of   NN:"<<endl;
      trainNN();
      cout<<"Now,this   modular   network   can   work   for   you."<<endl;

      while(ch=='y'   ||   ch=='Y')
      {
        cout<<"Please   input   data   to   be   tested."<<endl;
          for   (m=1;m<=3;m++)
          cin>>test[m];
          ch=getchar();
          o[1][1]=test[1];
          o[1][2]=test[2];
          o[1][3]=test[3];
          netout(8,1);
          result=o[3][1];
          printf("Final   result   is   %f.\n",result);
          printf("Still   test?[Yes]   or   [No]\n");
          ch=getchar();
      }


                  return   0;
  }

赞助本站

相关内容
AiLab云推荐
推荐内容
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港