展会信息港展会大全

麻省理工学院人工智能实验室
来源:互联网   发布日期:2011-09-19 13:36:28   浏览:19996次  

导读:转载:如何做研究--麻省理工学院人工智能实验室_江古段人_新浪博客,江古段人,...

转载:如何做研究--麻省理工学院人工智能实验室 (2011-01-09 11:00:30)

标签: 研究论文 不自视过高 子领域 草稿反复交流 不太过怀疑价值 勿追求完美 分类: 研究论文写作学习

 

如何做研究--麻省理工学院人工智能实验室
MIT AI实验室在读、毕业及名誉研究生共同编写
David Chapman 编辑
1988年9月 第1.3版
张 陈 李明明 许 强 项汉忠 译
徐六通 审

 

http://cadcg.hfut.edu.cn/text1.php

本文的主旨在于想说明如何做研究。我们给出一些启发式方法,可能有助于获得做研究所必须的技能(阅读,写作,编程)和理解并享受研究过程本身所需的技能(方法论,选择课题和导师,心理调整)。

1. 引言
  本文论述什么? 我们至今还没有发现能确保研究成功的秘诀。这篇文章收集了许多非正式的行之有效的建议,它们可能会对你有帮助。

  本文为谁而作?这篇论文是为MIT的AI实验室研究生新生而作的。但它可能对其他学院做AI研究的人也有用,甚至其他领域的人也会发现其中有价值的东西。

  怎样阅读本文?如果一口气将它读完,你会觉得它太长了。所以最好采用浏览的方式。大多数人会发现先看一下大概,然后再回过头来查阅一下与你当前的研究问题有关的部分是一种非常好的方法。

  本文在内容上大致分为两部分。前面几节讨论在做研究时所需的一些具体的技能:如阅读、写作、编程等等。接下来讨论研究的过程:研究过程是怎样的,如何来做研究,怎样选择导师和课题,如何调整好心理来处理研究过程中碰到的问题。大多数读者发现从长远来看后面的章节比前面的更有用、更吸引人。

  第二节是关于怎样通过阅读来对AI有所了解。介绍一些非常重要的期刊和一些怎样阅读的小窍门。
  第三节告诉你怎样成为AI团体中的一员:试着去结识一些AI领域的人,他们可能会让你了解领域的最新进展,告诉你哪些文章是值得你阅读的。
  第四节指导你如何学习AI相关的其他领域的知识。你需要对这些领域有基本的了解,并且可能要对其中的一两个做更为深入的理解。
  第五节关于坚持做研究笔记。
  第六节关于怎样写论文和学位论文,包括怎样写作和怎样在草稿中用注释,以及怎样发表论文。
  第七节介绍了怎样做演讲。
  第八节是有关编程方面的。AI编程可能与以前你接触过的其他编程有所不同。
  第九节是关于你在研究生生涯中面临的最重要的选择:选择你的导师。不同的导师有不同的风格,这一节告诉你如何找到适合自己的导师。导师是你必须知道如何去利用的资源,这一节将会告诉你如何去利用。
  第十节是关于学位论文。你的学位论文将会占用你研究生生涯的大部分时间。这一节将给你一些如何选择课题以及如何避免浪费时间的忠告。
  第十一节介绍研究方法学。这一节的大部分还没有完成。
  第十二节可能是整篇文章中极其核心的一部分,它是关于研究过程中的心理调整。它教你在研究过程中如何面对失败,如何设定目标,如何摆脱困境,如何避免不安全感,如何保持自尊,以及如何寻找乐趣。
本文还有待进一步完善,我们欢迎您的贡献和评论。有些章节很不完整(括号中的注解和楷体字标明了部分主要的不完整性)。我们感谢你的贡献,请将你的想法和评论发送至Zvona@ai.ai.mit.edu。

2. 阅读

  许多研究人员有一多半的时间都花在阅读上。与从自己的工作中学习相比,从别人的工作中学习要更快一些。这一节讨论怎样阅读AI相关的资料。第四节说明怎样阅读其他方面的资料。

  开始阅读的时间就是现在。一旦你开始认真准备自己的学位论文,你将不会有太多的时间,并且你的阅读将更加集中在一些与课题有关的资料上。在最初的两年里,你通常做一些课堂上的作业,并开始加快接触AI方面的知识。在这段时间,阅读教科书和杂志期刊上的文章已经足够了。(以后你会阅读一些论文草稿,见第三节)

  为了在AI领域打下坚实的基础,你必须要阅读的资料数量是多得惊人的,但因为AI还是一个很小的领域,所以你能够花一两年的时间来阅读已经出版的大部分重要论文。找出哪些资料是值得阅读的是有一些技巧的。有些参考文献是非常有用的,比如AI研究生课程的教学大纲就很有用。其他大学——特别是斯坦福大学——的AI资格考试的阅读清单也是非常有价值的,它可以开阔你的视野。如果你对其中某个领域感兴趣,你可以求助于这个领域高年级的同学,向他打听这个领域里有哪些重要的论文,并且问问他是否愿意将这些论文借给你复印一下。最近发表了大量的AI子领域编辑得很出色的论文集,特别是由Morgan-Kauffman出版的。

  AI实验室有三个内部出版物系列,按其正式程度递增为:工作论文,备忘录和技术报告。你可以在八层活动室的书架上找到它们。翻翻过去几年里出版的论文,剔除那些看起来不太有趣的。你会发现这些论文除了很重要外,对你了解你们实验室其他人正在做的事情也是非常有意义的。

  我们有大量与AI有关的期刊,要阅读全部这些可能要花费你毕生的时间。值得庆幸的是其中只有少数是值得一看的。有关系统构造为中心的主要期刊是《人工智能》(Artificial Intelligence),也称为《人工智能期刊》或是《AIJ》(Journal of Artificial Intelligence)。AI领域中大多数真正重要的论文最终会出现在《AIJ》这本期刊中,所以大约每年翻一下以前几期期刊是很有必要的,当然这本期刊中有些文章确实也很乏味。《计算智能》(Computational Intelligence)是《AIJ》新的竞争者,值得一读。《认知科学》(Cognitive Science)也出版大量重要的AI相关论文。《机器学习》(Machine Learning)是机器学习的主要来源。《IEEE PAMI》可能是目前已出版的最好的一本视觉期刊,每期会发表两三篇很有意思的文章。《国际计算视觉期刊》(The International Journal of Computer Vision,IJCV)是一本新出版的迄今为止很引人注意的期刊。《机器人学研究》(Robotics Research)中的论文大多是关于动力学方面的,有时候也会发表一些里程碑式的人工智能机器人方面的论文。IEEE的《机器人学与自动化》(Robotics and Automation)偶尔也会出版几篇不错的文章。

  每年都值得去一趟计算机科学阅览室(MIT的阅览室是在科技广场的一层),看一下去年其他大学的一些有价值的AI方面的技术报告,并阅读其中感兴趣的文章。

  阅读论文是一种需要练习的技能。你不可能去读完你所看到的所有论文的全文。阅读一篇论文可分为三个步骤。首先看看论文中是否有令你感兴趣的部分。AI论文有摘要,它会告诉你论文的内容。但是有时候也不一定,所以你得随便翻翻,把论文的各处都读一下,明白作者实际上做了什么。论文的目录,结论和引言部分也是可以发现文章是否吸引人的好地方。如果所有这些方法都失败了,你可能就得在整篇论文中找了。

  当你确定了论文论述的内容和论文的贡献是什么之后,你可以决定是否要进行第二个阶段阅读,即找出论文中有好东西的那部分。大多数论文可以由15页改写成1页,你需要找出那有用的一页。这通常会隐藏在一些看起来不太可能的地方。作者在文中认为有意义的东西你可能不感兴趣,反之亦然。最后,如果你觉得这篇论文确实值得一读,就可以从头阅读整篇论文。

  一定要带着问题来阅读论文。“我怎么使用这篇论文?”“它真的像作者所说的那样?”“如果...会如何?”。了解论文陈述的结论和读懂一篇论文是不同的。我们在理解论文时会考虑:论文的写作动机是什么?作者的选择(很多都是隐含的)是什么?论文中的假设和形式化是否现实?论文建议了哪些指导性内容?能够洞察到的问题有哪些?作者的研究计划中持续出现的难题有什么特征?论文主旨是什么等等。

  把阅读和编程结合起来是一个很好的方法。如果你对某个方面感兴趣并且阅读了一些这方面的论文,试着去编一些论文中描述的小程序,这将有助于你对它有更具体的了解。

  不幸的是,大多数AI实验室都相对独立且近亲繁殖,人们一般只阅读和引用各自院校的研究成果。其他学院的人们有着不同的思考问题方式,即使你认为他们所做的研究是有些错误的,试着去阅读、重视、并引用他们的成果也是很值得的。

  经常会有人递给你一本书或者一篇文章,认为你应该读一下,因为(1)它是现有最有价值的好东西,并且(2)对你正在进行的研究也正好适用。但通常当你真正读它的时候,你将会发现它并没有像所说的那样出色,并且适用性也成了问题。这可能会让人觉得迷惑。“是我出了问题还是我没有留意到一些有价值的东西?”事实上大多数的情况是:当你的朋友阅读一本相关的书或者文章的时候,他脑海中固有的想法或多或少地会使他觉得某些东西会有助于你的课题研究。

3. 入围

  最初的一两年后,你会对将要从事的那个子领域有一定的想法。这时或者更早的时候,你需要加入到非公开论文传递网(Secret Paper Passing Network)中。这个非正式的组织涉及了AI研究领域的所有部分。前瞻性的工作最终将形成公开发表的论文,但那是在那些睿智的人们已经了解了至少一年之后的事情了。这就意味着那些睿智的人将要领先一年的时间开始研究新的想法。睿智的人怎样发现一个新的想法呢?他们可能是在一次会议中听到,但是更可能是从非公开论文传递网中得到的。下面是一个例子。Jo Cool发现了一个好的想法。她拼凑出一些不太成熟的方法,在做了一定的研究后完成了论文的草稿。她想知道她的想法是否有价值,于是她将论文分发给十来个朋友,请他们提意见。她的朋友觉得这想法不错,同时也会告诉Jo Cool其中有哪些错误,并将这篇文章再分发给他们的朋友。他们的朋友又会继续分发送给自己的朋友......。Jo花费好几个月时间来修改这篇文章,并将它投到AAAI会议。六个月以后,它第一次被发表成铅字,但这是只有5页的压缩版本(这是AAAI会议录所允许的)。最后Jo开始整理程序,在AAAI版及反馈意见的基础上完成了更长的修订版本,并将它投到《AIJ》。《AIJ》在论文的评审、修订和发表的延迟大约会有两年的周期,所以当Jo的想法最终在期刊上发表已经是三年后的事了——这已经远远落在睿智的人首次发现这个想法以后了。所以睿智的人很少有从公开发表的期刊文章中学到与他们领域相关的内容,因为这些文章出现得太晚了。
你也可以成为一个睿智的人。下面的方法会给你一些启示,帮你踏入AI圈子:

  有许多讨论AI子领域(如连通论和视觉)的电子邮件列表。你可以从中选择并加入你所感兴趣的邮件列表。
当你和某领域的行家交流你的一个想法时,他们可能不会对你的想法直接做出评价,而会说“你读过某某文章吗?”这不是在考你,而是建议你读一下这篇文章,因为它可能跟你的想法相关。如果你没有读过这篇文章,一定要从对方那里了解一下那篇文章的内容,或者干脆向他索借这篇文章来复印一份。
当你读到一篇令人振奋的文章时,拷贝5份并将它送给你觉得可能会感兴趣的人。他们将会有回报给你。
实验室有许多正在进行的各领域的非正式的论文讨论小组。这些小组的成员每隔一两周会对一篇大家都读过的论文进行讨论。
有些人不会介意你翻阅他们桌子上的论文。也就是说,可以去看一看他们正打算阅读而堆放在桌上的论文,并经常地去翻阅一下。可以粗略地翻翻看是否有你感兴趣的东西。因为有些人可能会介意,所以在做之前最好问一下。你可以试着去找那些看起来比较友善或比较容易接触的人。
  同样的,有些人也不会介意你看他们的书柜。实验室中有很多有学识的人,他们的书柜中的收藏也特别的丰富。与学校图书馆比起来,这里通常能更快更可靠地发现所需的论文。
当你自己在写些东西的时候,将它分发给可能会感兴趣的人。(这样会出现一个潜在的问题:抄袭很少在AI界发生,但是它确实发生过。你可以在论文的封面写上“请不要影印和引用”之类的字眼。)多数的人都不会读完分发给他的大部分论文,所以当只有一部分你所分发的论文有反馈意见回来时,你不必太介意。对于准备在期刊上发表的论文,你会几易其稿,但很少有人会读完其中的一稿以上。你的导师应该是个例外。
  当你完成一篇论文的时候,将它发送给你认为可能对它感兴趣的所有人。不要认为他们自然会在期刊或会议录中看到。内部发行的丛书(备忘录和技术报告)更不大可能被别人读到。
多结识些不同类型的人对你会有帮助。试着去和不同的研究小组、不同的AI实验室、不同的学术领域的人去交换论文。对相关问题感兴趣的某两个小组的人可能没有机会相互交谈,但你可以使自己成为他们的桥梁,那样你会突然发现大量有趣的论文在你手中流动。
当你发现一篇论文引用了有趣的文献时,一定要记下来。把感兴趣的参考文献记录下来。经常去图书馆查阅一下。当你热衷于追踪一个有趣的课题时,你能够反向构造出一个论文引用关系的参考文献图谱。一个参考文献图谱就像是带有超链接的网页:论文A引用了论文B和C,B引用了C和D,C引用了D.......。注意经常被引用的论文往往都是值得一读的。这个参考文献图谱会有一些奇特的属性。首先经常会发现两个互相不认识的小组在研究同一课题。你发现自己在搜索资料时进入是一个循环,或者你会突然发现又跳到了另一个领域。在不同的学校或者使用不同方法研究时,通常会出现这样的情况。因此,尽可能了解更多的研究方法是极具价值的——通常这比比深入理解一种方法更为重要。
走出去与人们交流。告诉他们你正在研究什么并询问他们正在干什么。(如果你羞于与别的同学讨论你自己的想法,或是因为你还没有自己的想法,你可以与他们讨论你所读到的不错的——或者很糟糕的——东西。这样将会很自然地进入你所期望的下一个主题。)在七层的活动室每天中午都有一个非正式的午餐聚会。我们实验室的人都习惯于晚上工作,所以大家都在午餐时间一起轻松交流。邀请你自己一起去吧!
  如果你经常外出演示或参加会议,就准备一张名片。这将会让大家记住你的名字。
  从某个时候开始,你会开始参加一些科技会议。当你参加这些会议的时候,你会发现事实上几乎各种会议上所有的论文都是很乏味并且无聊的。(对于这个现象有一些有趣的理由,但与我们的主题无关。)那你为什么还要参加这些会议呢?原因是可以接触一些你们实验室以外的人。这些人可以帮你传播有关你的研究工作的消息,邀请你作演讲,告诉你某个地方的氛围和人文环境,把你介绍给别人,帮你找到一个暑假打工的机会,等等。那么怎样去结识这些人呢?走到你感兴趣的论文作者面前对他说:“我非常欣赏你的论文”,并且向他提些问题。
  到其他实验室做暑假兼职。这会让你认识许多新的同学,他们可能与你有着不同的看待问题的方式。你可以向高年级同学打听怎样得到暑假兼职。他们那儿可能会有你想要的位子,或者也可能会帮你联系一下。

4. 博览

  我们的AI研究人员通常对AI以外的知识一无所知,却依旧进行研究。但是你会逐渐发现想要做好研究必须通晓许多相关领域的知识。计算可行性本身并不能充分给出智能的约束条件。而其它相关领域的知识,比如从心理学中获取的实验数据,却能够提供其它形式的约束条件。更重要的是,其它领域的知识能提供给你新的工具和新的方法来思考和观察智能所涉及的内容。我们之所以需要学习其他领域知识,也是因为AI并没有衡量自身研究价值的标准,其目前的标准也是从其他领域借鉴过来的。数学的进展体现在一系列新的定理,工程学关注一个物体能否可靠地运行,心理学要求试验的可重复性,哲学追求极为严谨的思辨,等等。所有这些标准有时在AI研究中也非常适用,如果你能够精通这些标准,对于评价他人的工作成果和深化及维护自己的研究成果也是颇有价值的。

  在MIT通过六年左右时间的努力学习是能够顺利取得博士学位的,与此同时你还能在一两个非AI领域打下扎实的基础,通过广泛阅读其他领域的书籍,至少能理解其中的某些部分。下列方法有助于了解你所知甚少的领域:

  选修研究生课程。这种方法最可靠,但不是最有效的途径。
  阅读教材。这样做也不赖,只是教材大多过时了,而且通常废话太多。
  你可以从和他人交流中了解该领域内最棒的期刊杂志。然后略读最近几年的论文,并追踪参考文献的引用树。这通常是了解这个领域发展动向的最快途径,但同时也有可能会左右你的观点。
阅读该领域最著名学者的著作。
  和该领域以毕业校友保持联系。
  去听听讲座。学院的布告栏会公布这些学术交流活动。
  查看其他高校学院的课程安排,不要仅局限于MIT。例如在语言学和心理学方面,MIT的课程设置会使你的知识过于局限。可以对比一下哈佛大学的课程目录。拜访一下哈佛大学的研究生办公室,阅读他们的布告版,获取一些免费的资料。
下面提及的学科都是和AI相关的,同时也是我们很有必要了解的。

  计算机科学是我们研究需要用到的技术。研究生必修的入门课程未必能让你充分了解这一学科,因此你有必要做大量的阅读,以便学到这门学科更多的知识。计算机科学的所有分支——理论、体系结构、系统、语言、等等——都是必须学的。

  接下来最重要的学科大概就是数学了。学习数学对于研究图像和机器人学的人们来说是必不可少的;对于以做系统为中心的工作虽然并无直接联系,但是你能从中学到有用的思维方式。你首先要能够读懂定理,而具备证明数学定理的能力会给人留下深刻影响。很少有人主动学习数学,通常都是以课程的形式强制学习的,而且只做听众也是不够的,还需要做大量习题。因此应该在有精力的时候,尽早重视数学的学习,以后学习其它领域的知识就会容易很多。
  
  计算机科学的基础是离散数学,包括:代数、图论等。如果你要研究推理,逻辑学对你来说就非常重要的。逻辑学在MIT用得不是很多,但在斯坦福大学及其他的地方却是主导的思维方法,所以你需要深入学习逻辑学,从而能够提出自己的观点并为之辩护。修一两门MIT数学系的研究生课程也许就足够了。若你要研究感知和机器人学,则不仅需要连续数学,还要离散数学。数学分析,微分几何和拓扑学方面的扎实基础能够提供常用的必要技巧。另外,还会经常用到一些统计和概率方面的知识。

  认知心理学看问题的方式和AI大致相同,但是研究人员的目标却不尽相同,他们做实验而非写程序。每个人都必须对这个学科有所了解。Molly Potter在MIT开设了一门很好的研究生入门课程。

  发展心理学对做有关学习的研究工作是至关重要的。这门学科也是非常有用的,你能从中了解到就人类智力而言,做哪些事情是困难的或是容易的。运用发展心理学的知识,能够针对认知的体系结构建模。例如,有关幼儿如何获取语言方面的研究会对语言处理理论产生很大影响。Susan Carcey在MIT讲授一门研究生入门课程。

  心理学中“软性的”一类诸如心理分析和社会心理学对AI的影响较小,但潜在的影响是很大的。你能学会从完全不同的角度去思考人类到底是什么样的。诸如社会学和人类学的社会科学也起着同样的作用,了解许多不同观点是非常有用。这类学科完全可以自学。不幸的是,没有资深专业人士的帮助,在这些领域很难判别你的想法正确与否。上哈佛大学去看看:MIT的学生跨校选修哈佛大学课程还是很方便的。

  神经系统科学主要是关于人类计算硬件的。伴随着近年来计算神经系统科学和连接学的兴起,他们对AI的影响颇多。MIT的大脑和行科学系在视觉(由Hildreth,Poggio,Richards,Ullman讲授)、动力控制(由Hollerbach,Bizzi讲授)、和普通神经系统学(9.015,由多名专家讲授)方面开设了许多不错的课程。
语言学对自然语言的研究是至关重要的。除此之外,语言学还在认知方面有着深刻影响。Chomsky学派在MIT的语言学研究中占据统治地位。这可能对也可能不对你的胃口。去看看George Lakoff的新作《女人,火和危险品》(Women,Fire,and Dangerous Things),可以作为另类研究计划的一个实例。
工程学,尤其是电气工程,一直在AI研究中占据着重要地位,在MIT表现尤为明显。我们实验室特别注重拟订计划,这些计划通常详细到类似分析一个电路这样的具体安排。当你在搭建一块普通芯片或者调试Lisp机器的电源时,会察觉到了解电气工程是非常有用的。
  那些对感知和机器人学感兴趣的人来说,物理学有着极其有力的影响。
  AI所有的研究都是在隐式的哲学框架下开展的。AI领域内的绝大部分研究都有其隐含的哲学含义,可能你并不知晓。当然最好能明确自己研究的意义所在。学习哲学有助于你提出并理解某类论证,而这些论证被广泛运用在AI的论文中。哲学可沿着至少两个正交轴上进行分解。哲学通常是有关某种事物的哲学;而有关思维和语言的哲学通常和AI相关。哲学有不同的学派。从广义上讲,有两大不同的学派:分析哲学和大陆哲学。分析哲学派在思维方面和AI领域内的研究者有大致相同的观点。大陆哲学派以一种完全不同的眼光看待一些我们习以为常的一些东西。Dreyfus从大陆哲学的角度论证AI是不现实的。最近,一些研究者已认同大陆哲学和AI是相容的,并认为它提出了另一种解决问题的方法。MIT的哲学属于分析学派,而且深受Chomsky语言学研究的影响。
  这样看来每门学科都有许多知识应当掌握,事实如此。通常有一个误区,就是认为对于任意X,“仅当对X有更多认识,问题就会更加容易求解。”事实上总会有更多更大量学不完的相关知识。但最终你还是要坐下来解决问题。

5. 笔记

  多数科学家都保持着做研究笔记的习惯。你也应当坚持做笔记。可能从五年级开始你就一直被告知要养成这种习惯,确实也应该养成这个习惯。不同的方法适用于不同的人,自己试试。可以作在线记录,也可以记录在活页本或便签上。最好在实验室和家中各备一个。

  每当有个想法时就把它记在笔记本上。只有你才会去翻阅笔记,所以可以随意地写写东西。记录一些思路、当前的问题和可能的解决方法。总结你读到的有趣的东西,供今后参考。

  周期性的回顾自己的笔记。有些研究者每月进行一次总结以方便参考。笔记的内容通常会成为你论文的主线。这样的研究进展起来比较轻松。反之,你可能会发现论文写作的框架——标题,摘要,小标题,段落片断——也是组织内容的有效方法,即使你还没有打算将它扩展为一篇真正的论文。(你随时可以改变主意)你会发现Vera Johnson-Steiner的《思维笔记》(Notebooks of the Mind)一书非常有用,尽管表面看来书中大量篇幅并未谈及笔记,但是书中描述了一些如何从思维碎片中提炼出创造性观点的方法。
6. 写作

  写作的原因有许多:

  在你的研究生生涯,无论是博士或是硕士,都需要完成一或两篇论文,这取决于你所在学院的要求。
  练习写作,多多益善。
  学术研究的结果要么以论文的形式发表,要么就丢进垃圾桶里。在大多数学校,许多人成为教授后才开始专注于发表学术论文,而我们实验室的研究生在毕业之前就这么做了。发表并分发学术论文是个露脸的好机会。
  想要完善某些想法的最好办法就是先把这些想法写下来。你经常会发现在头脑中近乎完美清晰的论点,一旦动手写作就会混乱不堪。
  如果你的研究是要让大家受益,一定要和大家交流。这是研究工作最基本的职责。你写出的论文越好,就会有就更多人去阅读它。
  AI的研究单靠个人的力量是很难完成的。所以经常获取他人反馈意见是十分必要的。让他人评论你的论文就是最重要的途径之一。
  值得做的事情一定要做好。

  阅读一些有关写作的书籍。Strunk和White的《风格的要素》(Elements of Style)讲述了写作中的基本要点和写作中避免的地方。Claire Cook在《MLA详解》(The MLA's Line By Line,Houghton Mifflin出版)中介绍了修改句子的方法。Jacques Barzun的《简单与直截了当:一种写作修辞方法》(Simple and Direct: A Rhetoric for Writers,Harper and Row出版,1985)一书是关于文章组织的。

  写作过程中阅读一些优秀的著作,理解特定背景下的句式结构,你会发觉自己可以吸纳作者的风格。

  具备良好的写作能力需要花费许多精力、时间,索取并认真对待他人对自己文章的批评。想要快速提高写作水平是没有捷径可寻的。

  写作有时是苦恼的,同时也觉得是对“实际”工作的一种分心。但随着你慢慢擅于写作,进展就会迅速许多,如果你一开始就把写作成一门手艺,就能从写作的过程中感受到快乐。

  在某些时候碰到写作的障碍是必然的。起因有很多,而且这也无法避免。完美主义就会给写作带来障碍:无论你怎么去写,似乎都是不够完美的。应该意识到写作时一个逐渐完善的过程。先写一些片言只语,然后再回过头去修改。以片言只语的方式记录下自己的观点,继而就有思绪源源不断的涌现。如果你“无法”写出完整的文章,那就先写提纲。逐步细化提纲直到你能够轻松写出其中的细节。如果你觉得写片言只语也很困难,那就关掉你显示器上的亮度和对比度,使你根本无法看到自己输入的东西。记录下脑海中的每一个想法,即使看起来像垃圾。在积累了许多想法后,重新调整亮度和对比度,修改以前写的内容使其更加合理。

  另一个误区就是认为写作是从头至尾一气呵成的。在明确了整篇论文的要点后,通常都是从撰写论文的内容着手,最后写引言。不切实的把写作想象成一件容易的事情也是一个障碍。写作是一件艰苦的工作,需要花费很长时间,即使你每天只能写一页,也绝不要气馁和放弃。

  完美主义通常会导致无休止的修改一篇近乎完美的论文。这便是浪费时间了。(这也可以被看作是一种有意无意地逃避做研究的一种方式。)只需要把你写的论文当作与同行对话的一种表述。对话中的表述无需句句完美;不要指望一篇论文能涵盖某个研究领域的方方面面,或作为交流中的总结性发言。

  写信就是很好的实践。如果科技论文的论述方式更像写给朋友的一封信,大部分的科技论文都能有所提高。记日记也是锻炼写作的有效途径(并且在文体上能比科技论文得到更多实践)。两种方式还有其他方面的切实益处。

  写作常见的一个误区就是把大量时间花费在烦冗的格式上,从而忽略了内容的重要性。应该避免这种做法。LaTeX尽管不尽完美,但是它包括了写作所需的大多数格式。如果这还不够,可以从其他人那里借用一些代码。大多数的高校(包括MIT)网站都保留有撰写论文所需的扩展格式库。

  明确你要阐述的观点。这往往是最难的事,也是写作中最重要的因素。如果你写起来比较吃力而且不知如何去修改,那可能是你还不清楚自己真正要阐述的观点。一旦明确自己的观点,直截了当地阐述出来。

  论文的结构安排要使得读者能从中很容易发现你的研究成果。无论是段落还是整篇论文的组织,尽量把亮点放在最明显的地方。认真去撰写摘要。确保摘要阐明了论文的精髓。首先你自己要明确所要描述的内容!然后用少量的句子阐述清楚。太多的论文摘要只是对论文作一般性描述,并说是有一个好的想法,但却没有说明这个想法到底是什么。

  不要“夸耀”自己的成果。论文的读者都是有见地的人,真诚而自重。反之,也不要去贬低或者削减自己成果。
你经常会发现,某一句或某一段不够好,但是却找不到修改方法。这是因为你已经进入了一个死胡同里出不来了。这时的你应该重新撰写整个段落。随着不断实践,这种情况会慢慢减少的。

  确保论文有一个主要论点。如果你的程序能在10毫秒内解决了X问题,那就告诉读者为什么如此之快。在论文中不要仅局限于讲述系统是如何构建和做什么,更要阐述清楚系统正常运行的原因及其有趣之处。

  论文是写给人看的,而非机器。一篇论文仅有正确的论点是远不够的,还应当让读者容易理解。除了最简单的推理以外,不要期待读者做任何逻辑演绎。即便你在论文第7页的脚注中阐述了一样小玩意儿的工作原理,当23页中再次提及时还需要进一步解释,不然读者的思维会随着你论述的展开而逐渐迷惑。正式的论文要写清楚也是很困难的。不要去效仿数学论文,它们评判优秀的标准是叙述尽可能的少,这会使得读者阅读起来很吃力。这样的标准并不适合AI。

  完成整篇论文后,删除第一段或者开始的几句话。你会察觉到这大多都是和论文内容无关的话语,同时还会发现在第一段末尾或者第二段开始处有更好的介绍性语句。

  如果你把论文写作放到在所有研究完成之后再开始,所获就会甚少。从课题的研究开始,就养成这样的习惯:做笔记记录下你参与的工作和在几个月内的收获。学会从记录研究内容的笔记开始写作。用两天的时间去写一篇草稿,若需要花费更长时间,那你可能是一个完美主义者。这些草稿并不是用来评判你的优劣,而是用来和朋友一起分享的。记得在封面上注明“草稿——请勿引用”的字样。把论文拷贝几份,分发给感兴趣的人(当然包括你的导师!)。这种做法在小范围中进行,只需要少量投入,但对你写正式文章(评论、理清思路、写作实践等)都很有好处。如果你的研究进展顺利,通常这些非正式论文以后均能作为正式论文——从AI实验室的工作论文到杂志上的文章——的主线。

  如果成为非公开论文传递网的会员,便有作者邀请你批阅他们的初稿。论文上的批注是颇有价值的。你可以和他人互相批阅对方的论文。你评阅别人的论文越多,当你自己写论文时,别人也会给你更多的评阅意见,这就是礼尚往来。再者,学会批阅他人的论文会有助于你的写作。

  写出有意义的批注也是一门艺术。

  要想提出有用的建议,必须把论文读上两遍,第一遍理解论文的要点,第二遍给出批注。

  如果作者重复犯同样的错误,不必去反复指出。试着去找出这种错误的模式、作者为什么会如此,及可行的改进方法。然后在论文的首页上做出详细叙述或直接告知作者本人。

  作者在考虑你的建议通常会偷懒,即只修改其中的一个词语,一个短语或者一个句子。如果论文中某些错误意味着作者必须修改整个段落,或重新思考整个部分的中心论点,或整篇论文的组织结构有问题,请做出明显标注以防作者忽略掉。

  切忌在论文上批注“垃圾”这一类非建设性的词语。这样做于事无补。尽量给笔者一些建设性的意见。在给别人写评语时,不妨站在作者的立场考虑一下你面对别人对你论文的评注会有什么反应是有好处的。

  注释的种类繁多。有针对文字表达的注释,也有针对论文内容的注释。针对文字表达的注释范围也很广。校对笔误、标点符号错误、拼写错误、漏字等等。学习使用标准的编辑符号。你还可以去纠正语法、措词错误,修改冗余和模糊的语句。通常同一语法错误会在论文中出现多次,比如用逗号连接两个语句,在注释中需要清楚地指出这类错误。其次,在论文结构组织上的不足也需要批注出来:譬如,从短语到句子到段落到章节不同范围内的观点无序组织、冗余、不相关的内容、缺失的论证等等。

  对内容的注释很难归纳出一些特征来。你可以建议作者扩充论点,提出一些值得思考的方面,标注出明显的错误,指明论文中潜在的问题,还可以其赞扬表达得当。“由于Y的原因,你应该读一下X”不失为一条中肯的注释。

  在请求别人对论文评注时,你首先想弄清楚哪种评论更有用。对于论文草稿,作者大多期望得到针对内容和论文组织方面的注释;对于终稿,则渴望得到表达方面的注释。在请求别人给予批注前,确信你已经检查了整篇论文没有拼写错误,这是最基本的礼貌。

  没有必要采纳所有的建议,但是应当认真去对待。作者总是舍不得删掉论文的某些部分,但这往往会对论文有所改进。经常你会发觉自己排斥某个建议,这是因为虽然它指出了论文中真正的问题所在,但所提的解决方案并不吸引人。再寻找一个更好的方法。

  发表你的论文是很重要的事情。这比看起来要容易些。AI出版物评阅人期望的是那些(a)具有某些新观点,同时(b)在某些方面不是支离破碎的论文。如果你浏览一下诸如IJCAI的会议论文集,你会发现其水准之低令人吃惊。这种现象正因评阅过程固有的随意性而恶化。因此,发表论文的一个诀窍就是一种不断地尝试。这里还有一些其他建议:

  确保论文的易读性。投稿的论文通常因为很难理解或组织无序或者不知所云而被退回。

  在论文投递给期刊之前反复修改草稿。听取并采纳他人的建议。不要急于为发表结果而仓促地投稿;在AI领域的竞争没有那么激烈,而且论文发表的时延比获取论文评阅意见的时延要长得多。

  仔细阅读你准备投稿的期刊或会议的最近几期,以确保你的论文风格和内容符合其要求。
  大多数的出版物都有一页“作者须知”来概述对论文的要求。应当去仔细阅读。
  绝大多数会议都会在录用的稿件中选取内容和文采上的佼佼者作为获奖论文。这些论文都值得一读。
  通常是把篇幅较短的关于部分研究结果的早期报告投递到学术会议,而将篇幅较长的针对整个课题研究的最终文章投给期刊杂志。
  论文被拒时不要气馁。
  期刊杂志和学术会议评阅论文的过程差别很大。为了缩短反馈的时间,会议组织必须快速评阅论文。没有足够时间进行充分思考或交流。若论文被退回了,意味着没有机会发表了。但是如果给期刊投稿,你有机会与编辑或者通过编辑与评阅人进行辩论。

  评阅人一般都会对你有帮助的。如果收到一个不负责任的评阅报告,你应当向该程序委员会主席或者编辑投诉。不要指望会议的评阅报告中会有很多反馈意见。但你通常能从期刊杂志获取极好的建议。对于这些建议,你大可不必全盘接受,但若不愿采纳,有必要阐述清楚你的理由,同时应该意识到可能需要进一步的商讨。无论你处在论文评阅过程的哪一方,都应当讲礼貌。作为你今后的职业生涯中的一部分,你将会与你评阅论文的作者们一起共事。

  MIT的AI实验室里的备忘录基本上都是可发表的或者接近可发表要求的。技术报告事实上几乎都是这些文章的修订版。工作论文通常都是非正式的。这些都是将一篇文章给其他同事传阅并经修改后得到的不同版本。你从出版室(就在八层活动室隔壁)领取一张表格并得到两位教员签字同意后就可以将某篇内部论文公开发表。

  和研究中其他工作一样,论文写作的时间通常要比你预期的更长。预计用来投稿发表的论文花费的时间尤其长。论文完成后即可给刊物投稿。几个月后就会收到对论文的评阅意见,你必须对论文进行修改。再有一段时间后会收到校样以便作最后的校对。如果你发表不同形式的论文,类似于短篇的会议论文和长篇的期刊论文,这些可能要经历几个来回。结局是在很长一段时间里,你以为已经完成了论文并且整个题目已经令你极其厌烦后,你却始终在修改同一篇文章。这给我们启示:不要因为某个领域容易发表论文而去做一些需要大量热情投入的研究工作,你无法想象将会遇到什么样的困难。

7. 演讲

  演讲是另一种和你的同行们交流的方式,并且我们刚才关于写作所讨论的大部分内容同样适合于演讲。那种站在讲台上演讲并且不至于使听众昏昏欲睡的能力,对获得承认、尊敬、以及最终的求职都是至关重要的。演讲的能力并不是天生的——你可能在刚开始研究生生涯的时候是一个糟糕的演讲者,但是只要通过不断的实践,给人们去做实际的演讲,最终你将会成为一名引人注目的、才华横溢的演讲者。

  下面介绍一些学习和练习演讲才能的方法:

  Patrick Winston写了一篇关于如何演讲的小文章。每年一月他都会以此做一个讲座,描述并展示它的演讲技巧。
如果你觉得自己是一名糟糕的演讲者、或者希望成为一名优秀的演讲者,可以去选修一门公共演讲课程。选一门表演入门课也是有帮助的。

  如果你导师的学生有定期的学术讨论会,你可以自愿的在讨论会上讲述你的工作。

  MIT的AI实验室有一种叫做旋转研讨会的半正式演讲会。如果你觉得自己的研究成果可以成为AI备忘录或者会议论文,可以自告奋勇到会上去演讲。

  充分了解实验室各个机器人项目,这样当你的亲戚朋友从远方来的时候,你可以带领他们参观并就每一个机器人向他们做一个短短60秒钟的介绍。(你的亲戚和非AI朋友通常会喜欢这样的介绍,因为通常他们不会对TMS复杂的技术细节留下太深刻的印象。)
因为修改一个演讲稿通常比修改一篇论文要简单的多,所以有些人发现这是一个寻找如何正确表达自己想法的好办法。(Mike Brady曾经宣称他所有的最好的论文都来自演讲。)

  在空房间里面练习演讲,最好是在你将要演讲的地方。有关环境影响记忆的研究结果表明如果在将要演讲的地方练习将有助你更好地记住你所要讲的内容。练习的过程中可以让你调整演讲的结构:每张幻灯片应该说些什么,如何平滑衔接,保持言语和幻灯片同步,估计整个演讲的时间。你在调整投影设备上所花的时间越少,你用于交流的时间就越多。

  使用镜子,摄像机,录音磁带帮助练习也是很好的选择。实验室里有这三种设备。这有助于改善语态和肢体语言的运用。
对于比较正规的演讲——比如口语考试——你可以在一些朋友面前做练习,并请他们提出意见。
观察其他人士如何做演讲的。很多访问MIT的人会来学院做了演讲。去听这些演讲可以让你感受一下你不熟悉的领域,如果演讲者的演讲令人厌烦,你可以以分析演讲者的失误为乐。(参加研讨会也是治愈你午后喜欢吃零食习惯的好办法…。)

  找个安静的地方向你的一个朋友解释你最近的许多想法,这对提高你的沟通能力和调整你的思路都会大有帮助
一些需要在准备演讲和演讲时牢记的关键事情:

  在一次演讲中你只能提出一个“观点”或者“主题”。在20分钟或者更短的演讲中,必须十分清楚的阐述你的观点,不要牵扯一些复杂的其他东西。在30或45分钟的演讲中可以阐述一些必要的相关资料或者背景。在一个小时的演讲中,可以陈述观点的来龙去脉,甚至揭示一些反面例子。演讲不应该超过一个小时(虽然也经常发生)。

  听众坐在报告厅里是想了解你要说的东西。他们不是为了等待可以攻击你的一个借口,如果你很放松,听众也会感到舒服。

  对每一个幻灯片至少要花费一分钟的时间。不同的人快慢可能不同,但是有一个共同的毛病就是总认为自己可以在保持思路清晰的同时讲的更快。实际上你不能。
  不要试图用你知道的一切填满一个演讲。你只需抓住你的中心观点,放弃细节。

  AI的演讲经常使用胶片投影,也即幻灯片。幻灯片应该保持简洁。用少量的词语和大号字体。如果你把幻灯片放在地上,而你站着低头看幻灯片上的文字觉得费力,说明字体就太小了。在能用图示的时候尽量使用图片。不要站在屏幕的前面。如果能够直接到屏幕上去指点就不要在投影仪上指点。如果你一定要在投影仪上指点,也一定不要直接碰到胶片而导致其抖动。

 

 

 

 

分享

阅读┊ ┊ ┊┊ ┊打印┊

已投稿到:

排行榜 圈子

加载中,请稍候......

前一篇:拖延之伤

后一篇:转载:如何做研究--麻省理工学院人工智能实验室2

评论 重要提示:警惕虚假中奖信息       带你的博客进入新时代       关注每日最热门博客 

  • 评论加载中,请稍候...
  • 发评论 Qing时代来临,不容错过       这里有属于你的小清新       关注每日最热门博客

    登录名: 密码: 找回密码 注册

    昵   称:

       

    验证码: 请点击后输入验证码

    赞助本站

    相关内容
    AiLab云推荐
    展开

    热门栏目HotCates

    Copyright © 2010-2025 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港