展会信息港展会大全

脉冲耦合神经网络与数字图像处理
来源:互联网   发布日期:2011-09-19 09:47:24   浏览:7720次  

导读: 从20世纪90年代开始,通过Reinhard Eckhorn等对猫的视觉皮层神经元脉冲串同步振荡现象的研究,得到了哺乳动物神经元模型,并由此发展形成了脉冲耦合神经网络PCNN模型。脉冲耦合神经网络进一步靠近真实哺乳动物视觉神经网络中神经细胞的工作原理,非常适合于...

  从20世纪90年代开始,通过Reinhard Eckhorn等对猫的视觉皮层神经元脉冲串同步振荡现象的研究,得到了哺乳动物神经元模型,并由此发展形成了脉冲耦合神经网络PCNN模型。脉冲耦合神经网络进一步靠近真实哺乳动物视觉神经网络中神经细胞的工作原理,非常适合于图像分割、图像平滑及降噪等应用,是20世纪神经网络理论发展的里程碑,引起了众多学者的兴趣。
  本书在详细阐述PCNN脉冲耦合神经网络的原理的基础上,分析了其在数字图像处理技术中的应用,特别是在图像降噪、图像分割、参数寻优、压缩编码、图像增强、图像融合、目标识别、图像签名、图像检索、组合决策优化、虹膜识别、细胞分析、凹点检测以及语音识别等方面的最新研究成果,同时介绍了其与数学形态学、小波理论等结合

赞助本站

相关热词: 脉冲 网络 数字 图像处

相关内容
AiLab云推荐
推荐内容
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港