摘 要 对于纹理(线奇异性)丰富的图像,脊波可以获得比小波更加稀疏的表示。统计表明边缘表示了图像的主要信息。利用脊波对“线奇异性”图像的最优逼近的思想,设计出基于正交有限脊波变换的图像压缩算法。通过对图像的脊波系数进行量化和编码达到压缩图像的目的。实验结果表明,与基于小波的压缩算法相比,该算法能获得更高的压缩率,同时保持较高的峰值信噪比和良好的重建图像视觉效果。 关键词 图像压缩;脊波变换;稀疏表示;算术编码
0 引言 小波的出现在许多领域取得了广泛的应用,并迅速成为诸多学科的重要分析工具之一。小波变换以其良好的时频局域特性以及多分辨分析能力在数字信号处理和数字图像压缩方面取得了巨大的成功[1][2]。在新的静止图像压缩标准ISO 15444(即JPEG2000)中就是把小波变换作为其核心技术。但是小波变换只能反映信号的零维奇异性,对于具有二维分段光滑的信号或一维直线奇异性的图像,小波变换却不是最“稀疏”的表示方法[3][4]。图像中包含有大量的纹理特征,线奇异性表现比较突出,小波变换不能达到最优的逼近[5]。为了克服小波的这种不足,Candès等人提出了一种新的多尺度变换—脊波变换(Ridgelet transform)[3],它特别适合于具有直线或超平面奇性的高维信号的描述,能够有效地处理二维图像的线奇异性,较好的对此类信号进行“逼近”,是比小波更好的稀疏表示图像的工具[5]。 本文利用正交有限脊波变换对图像进行分解,然后对变换后的系数进行量化和熵编码,以达到图像压缩的目的。实验表明,同基于小波变换的压缩算法相比,该算法能提高图像的压缩比,同时保持较低的失真度。1 有限脊波变换 给定一个双变量可积的函数f(x) ,它在R2 空间(二维实空间)上的二维连续脊波变换(2D continuous ridgelet transform)[3][4]定义为: (1) 其中 是二维的脊波函数,它的定义为: (2) 式(2)中, 是小波类的一维函数,参数 满足如下的条件:a>0 ,b∈R , 。脊波逆变换可以通过如下的公式完成: (3) 考虑到在 R2 空间上小波变换可以写成如下式子: (4) 式中二维小波函数是由一维小波所长成的,即满足: (5) 其中一维小波 。 可以看出脊波变换和二维小波变换非常类似,只是脊波用线参数来代替小波中的点参数。小波在处理具有孤立的点奇异性图像时非常有效,而脊波变换在表示线奇异性图像时表现更优。实际上,我们可以把脊波变换看成是在直线上的一维小波变换。而在二维空间点和直线是通过Radon变换联系在一起的。 Radon变换可以写作为: (6) 由(6)式可见,f(x) 的Radon变换是f(x) 沿不同θ方向的投影;而 f(x) 的脊波变换看作是先对 f(x) 进行Radon变换,然后沿着每个积分方向做一维小波变换的结果,即: (7) 正因为脊波变换在Radon域上对各个方向进行一维小波变换,将图像的线奇异性转换为点奇异性,充分利用小波变换对点奇异性的良好表示特性来得到具有线奇异性图像的稀疏表示。脊波逆变换可以通过沿每一方向做一维小波逆变换,然后进行Radon逆变换得到。 脊波变换离散化是通过离散Randon变换外加离散小波变换得到。然而Randon变换的离散化是一个比较复杂的问题,在众多的离散化算法中,有些存在大量的冗余,有些虽然克服了大的冗余度,但是得到其所对应的逆变换又比较困难。其中有限Radon变换FRAT(Finite Radon Transform)[6][7]是其中比较好的离散化算法之一。有限Radon变换是有限大小的二维离散图像实现Radon变换的离散化方法。 一个N×N(N要求是一个素数)大小的图像 f(i,j),其中 {0,1,2…,N-1}。它的有限Radon变换FRAT定义为: (8) 其中, 是满足斜率 k和截距 l 的直线上的所有象素点的集合,定义如下: , 当 k∈{0,1,2…,N-1} , 当 (9) 由式(8)(9)可知,有限Radon变换是满足要求的直线上的图像象素点灰度值的累加和。一个N×N大小的图像经有限Radon变换后,将得到(N+1)×N大小的矩阵,它有N+1个斜率方向,每个方向上有N个系数。 有限Radon变换的逆变换可以通过有限逆投影变换FBP(Finite Back Projection)来得到: ,就可以定义正交有限脊波变换如下: (12) 在
基于正交有限脊波变换的图像压缩
来源:互联网 发布日期:2011-09-13 09:46:01 浏览:4503次
导读:摘 要 对于纹理(线奇异性)丰富的图像,脊波可以获得比小波更加稀疏的表示。统计表明边缘表示了图像的...
上一篇:简单中文分词实现(修正版)
相关内容
AiLab云推荐
最新资讯
- 小鹏自研图灵AI芯片流片成功:一颗顶三颗英伟达Qrin X芯片
- 【EMNLP2024】阿里云人工智能平台PAI多篇论文入选EMNLP2024
- 麻省理工团队成功研制出全新纳米级3D晶体管,垂直纳米线结构创新
- 小鹏:未来 AI 汽车搭载至少 3 颗自研图灵芯片,已跑通智驾功能
- 脑机接口领域获关注 已有上市公司开始布局
- 无需开颅将ChatGPT植入大脑,这家比尔盖茨支持的AI硬件公司,要挑战马斯克脑机接口
- Sam Altman泄露新模型o2,太会整活了,营销鬼才
- 无需开颅手术!贝索斯与比尔·盖茨押注的脑机接口公司要挑战马斯克
- 引领AIGC新时代,畅享商业新未来,百度营销擎舵彰显“平台”独特价值
- Python 成 GitHub 最受欢迎编程语言,AI 成主要推动力
本月热点
热门排行
-
存储芯片年涨七成不算完:AI需求接棒,大厂持续加注
阅读量:18002
-
美大选逼近!传大陆芯片设计业计划从台积电转单三星
阅读量:13751
-
美国芯片制造业迎来历史性投资,狂砸资金新建工厂
阅读量:13095
-
黄仁勋对话扎克伯格:新款芯片样品本周发送,AI行业还有5年产品创新期
阅读量:11995
-
马斯克:Neuralink 今年预计完成 10 例脑机接口植入手术
阅读量:11845
-
应对先进封装挑战,芯碁微装直写光刻技术助力本土创新突破
阅读量:11482
推荐内容
- 2024年德国汉诺威畜牧业展览会
- 2024山东国际玻璃工业技术展览会
- 2024沙特利雅得国际工程机械及混凝土展
- 2024沙特利雅得国际建材展Saudi Build
- 2024第29届欧洲法国(巴黎)国际海事防务展
- 2024 沙特国际照明电力能源展
- 第三届世界材料科学与工程研讨会(SMSE 2024)
- 2024第七届中国国际进口博览会(进博会 CIIE)
- 2024年西班牙国际电气电力照明展览会
- 2024中国(余姚)国际塑料博览会暨第二十五届中国塑料博览会
- 2024第三十届哈尔滨现代农业设施设备展 暨哈尔滨种业博览会/哈尔滨农资博览会
- 2024亚太新材料创新应用博览会(APAME2024)
- 2024第28届亚洲国际动力传动与控制技术展览(PTC)
- 2024年中东欧(塞尔维亚)国际能源展
- 2024第24届亚洲国际物流技术与运输系统展览会(CeMAT 亚洲物流展)
- Indomarine2024第七届印尼(雅加达)国际海事防务展
- 2024年意大利博洛尼亚国际农业及园林机械展EIMA International
- 2024年越南河内食品及食品加工包装展Vietfood&ProPack
- 2024第28届俄罗斯(莫斯科)国际军警展
- Indoaerospace2024第八届印尼(雅加达)国际航空航天展
- Indodefence2024第十届印尼(雅加达)国际防务展
- 2024第二届热管理材料技术博览会
- 2024年韩国釜山国际水产博览会
- 2024亚洲电子生产设备暨微电子工业展览会(NEPCON ASIA)
- 2024年美国盐湖城户外运动用品展览会(冬季)
- 2024深圳国际薄膜与胶带展(FILM & TAPE EXPO)
- 2024深圳国际全触与显示展(2024深圳全触展)
- 2024AMTS第二十届深圳国际汽车制造技术与装备及材料展览会
- 2024深圳国际全触与显示展览会
- 2024 深圳国际薄膜与胶带展览会
- 2024 中亚(哈萨克斯坦)照明及智慧城市展
- 第二届国际催化、化学科学与技术大会(ICCST 2024)
- 2024坦桑尼亚造纸包装、生活用纸和卫生用品展览会
- 2024第9届世界石油天然气装备博览会暨采购大会(WOGE2024)
- 2024第十七届厦门国际美业博览会
- 2024年坦桑尼亚造纸、包装、生活用纸 和卫生用品展
- 2024第十八届深圳国际金融博览会(金博会)
- 2024烟台国际能源低碳产业链展览会
- 2024第七届深圳海外置业移民留学展览会
- 2024(第十五届)重庆汽车消费节暨(第五届)房车生活节(CACF)
- 2024(第二十一届)中国西南(昆明)国际汽车博览会暨智能网联及未来出行汽车博览会
- 2024第十六届郑州国际汽车展览会暨新能源智能网联汽车展览会