展会信息港展会大全

面向MATLAB工具箱的神经网络理论与应用
来源:互联网   发布日期:2011-09-09 15:36:03   浏览:20295次  

导读:购买《面向MATLAB工具箱的神经网络理论与应用-第3版》请到王府井书店网上书店,在王府井书店网上书店您可以了解到与《面向MATLAB工具箱的神经网络理论与应用-第3...

面向MATLAB工具箱的神经网络理论与应用 络工具箱4.O.6版本,分别从网络构造、基本原理、学习规则以及训练过
程和应用局限性几个方面,通过多层次、多方面的分析与综合,深入浅出
地介绍了人工神经网络中的各种典型网络,以及各种不同神经网络之间
在原理和特性等方面的不同点与相同点。

目录: 第3版前言
第2版前言
前言
第1章 概述
1.1 人工神经网络概念的提出
1.2 神经细胞以及人工神经元的组成
1.3 人工神经网络应用领域
1.4 人工神经网络发展的回顾
1.5 人工神经网络的基本结构与模型
1.5.1 人工神经元的模型
1.5.2 激活转移函数
1.5.3 单层神经元网络模型结构
1.5.4 多层神经网络
1.5.5 递归神经网络
1.6 用MATLAB计算人工神经网络输出
1.7 本章小结
习题
第2章 前向神经网络
2.1 感知器
2.1.1 感知器的网络结构
2.1.2 感知器的图形解释
2.1.3 感知器的学习规则
2.1.4 网络的训练
2.1.5 感知器的局限性
2.1.6 “异或”问题
2.1.7 解决线性可分性限制的办法
2.1.8 本节小结
2.2 自适应线性元件
2.2.1 自适应线性神经元模型和结构
2.2.2 W-H学习规则
2.2.3 网络训练
2.2.4 例题与分析
2.2.5 对比与分析
2.2.6 单步延时线及其自适应滤波器的实现
2.2.7 自适应线性网络的应用
2.2.8 本节小结
2.3 反向传播网络
2.3.1 BP网络模型与结构
2.3.2 BP学习规则
2.3.3 BP网络的训练及其设计过程
2.3.4 BP网络的设计
2.3.5 限制与不足
2.3.6 反向传播法的改进方法
2.3.7 基于数值优化方法的网络训练算法
2.3.8 数值实例对比
2.3.9 本节小结
习题
第3章 递归神经网络
3.1 各种递归神经网络
3.1.1 全局反馈型递归神经网络
3.1.2 前向递归神经网络
3.1.3 混合型网络
3.1.4 本节小结
3.2 全局反馈递归网络
3.2.1 霍普菲尔德网络模型
3.2.2 状态轨迹
3.2.3 离散型霍普菲尔德网络
3.2.4 连续型霍普菲尔德网络
3.2.5 本节小结
3.3 Elman网络
3.3.1 网络结构及其输入输出关系式
3.3.2 修正网络权值的学习算法
3.3.3 稳定性推导
3.3.4 对稳定性结论的分析
3.3.5 对角递归网络稳定时学习速率的确定
3.3.6 本节小结
3.4 对角递归神经网络
3.4.1 网络结构及其输入输出关系式
3.4.2 网络的稳定性分析
3.4.3 进一步的讨论
3.4.4 数值实例
3.4.5 本节小结
3.5 局部递归神经网络
3.5.1 PIDNNC的设计
3.5.2 闭环控制系统稳定性分析
3.5.3 实时在线控制策略的设计步骤
3.5.4 数值应用
3.5.5 本节小结
习题
第4章 局部连接神经网络
4.1 径向基函数网络
4.1.1 径向基函数及其网络分析
4.1.2 网络的训练与设计
4.1.3 广义径向基函数网络
4.1.4 数字应用对比及性能分析
4.1.5 本节小结
4.2 B样条基函数及其网络
4.3 CMAC神经网络
4.3.1 CMAC网络基本结构
4.3.2 CMAC的学习算法
4.4局 部神经网络的性能对比分析
4.4.1 CMAC、B样条和RBF共有的结构特点
4.4.2 CMAC、B样条和RBF的不同之

赞助本站

相关内容
AiLab云推荐
展开

热门栏目HotCates

Copyright © 2010-2025 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港