展会信息港展会大全

C# 实现图像相似度算法
来源:互联网   发布日期:2011-09-09 15:10:19   浏览:9996次  

导读:才疏学浅,只把计算图像相似度的一个基本算法的基本实现方式给罗列了出来,以至于在最后自己测评的时候也大发感慨,这个算法有点不靠谱。不管怎么样,这个算法...

  近日逛博客的时候偶然发现了一个有关图片相似度的Python算法实现。想着很有意思便搬到C#上来了,给大家看看。

  闲言碎语

  才疏学浅,只把计算图像相似度的一个基本算法的基本实现方式给罗列了出来,以至于在最后自己测评的时候也大发感慨,这个算法有点不靠谱。不管怎么样,这个算法有时候还是有用的,所以还是列出来跟大家伙一起分享分享~~powered by 25175.net

  PS:图像处理这一块博大精深,个人偶尔发现了点东西拿来分享。说的不好的地方,写得太糟的地方,诸位准备扔砖头还望淡定,淡定~~

  基本知识介绍

  颜色直方图

   颜色直方图是在许多图像检索系统中被广泛采用的颜色特征,它所描述的是不同色彩在整幅图像中所占的比例,而并不关心每种色彩所处的空间位置,即无法描述图像中的对象或物体。颜色直方图特别适用于描述那些难以进行自动分割的图像。

  灰度直方图

  灰度直方图是灰度级的函数,它表示图像中具有每种灰度级的像素的个数,反映图像中每种灰度出现的频率。灰度直方图的横坐标是灰度级,纵坐标是该灰度级出现的频率,是图像的最基本的统计特征。

  本文中即是使用灰度直方图来计算图片相似度,关于算法那一块也不赘言了,毕竟图像学图形学,直方图我是门儿都不懂,我也不准备打肿脸充胖子,只想实现一个最基本的算法,然后从最直观的角度看看这个算法的有效性,仅此而已。

  算法实现

   诸位看官休怪笔者囫囵吞枣,浅尝辄止的学习态度。额毕竟是因兴趣而来,于此方面并无半点基础(当然,除了知道RGB是啥玩意儿——这还幸亏当年计算机图形学的老师是个Super美女,因此多上了几节课的缘故),更谈不上半点造诣,看官莫怪莫怪,且忍住怒气,是走是留,小生不敢有半点阻拦~~

  大致步骤如下:

  1, 将图像转换成相同大小,以有利于计算出相像的直方图来

  2, 计算转化后的灰度直方图

  3, 利用XX公式,得到直方图相似度的定量度量

  4, 输出这些不知道有用没用的相似度结果数据

  代码实现

  步骤1,将图像转化成相同大小,我们暂且转化成256 X 256吧。

public Bitmap Resize(string imageFile, string newImageFile)

        {

            img = Image.FromFile(imageFile);

            Bitmap imgOutput = new Bitmap(img, 256, 256);

            imgOutput.Save(newImageFile, System.Drawing.Imaging.ImageFormat.Jpeg);

            imgOutput.Dispose();

            return (Bitmap)Image.FromFile(newImageFile);

      }

  这部分代码很好懂,imageFile为原始图片的完整路径,newImageFile为强转大小后的256 X 256图片的路径,为了“赛”后可以看到我们转化出来的图片长啥样,所以我就把它保存到了本地了,以至于有了上面略显丑陋的代码。

  步骤2,计算图像的直方图

public int[] GetHisogram(Bitmap img)

        {

            BitmapData data = img.LockBits( new System.Drawing.Rectangle( 0 , 0 , img.Width , img.Height ), ImageLockMode.ReadWrite , PixelFormat.Format24bppRgb );

            int[ ] histogram = new int[ 256 ];

            unsafe

            {

                                byte* ptr = ( byte* )data.Scan0;

                                int remain = data.Stride - data.Width * 3;

                                for( int i = 0 ; i < histogram.Length ; i ++ )

                                        histogram[ i ] = 0;

                                for( int i = 0 ; i < data.Height ; i ++ )

                                {

                                        for( int j = 0 ; j < data.Width ; j ++ )

                                        {

                                                int mean = ptr[ 0 ] + ptr[ 1 ] + ptr[ 2 ];

                                                mean /= 3;

                                                histogram[ mean ] ++;

                                                ptr += 3;

                                        }

                                        ptr += remain;

                                }

            }

                   

赞助本站

相关内容
AiLab云推荐
推荐内容
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港