展会信息港展会大全

图像处理 模式识别 相关技术简析
来源:互联网   发布日期:2011-09-09 14:55:48   浏览:9985次  

导读: 所谓模式和模式识别,从广义上说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式;狭义地说,模式是通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息;把模式所属的类别或同一类中模式的总体称为模式类...


所谓模式和模式识别,从广义上说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式;狭义地说,模式是通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息;把模式所属的类别或同一类中模式的总体称为模式类(或简称为类)。而“模式识别”则是指在某些一定量度或观测基础上把待识模式划分到各自的模式类中去。

模式识别的方法,即数据聚类、神经网络、统计分类和结构(句法)模式识别。用于图像识别的方法主要分为决策理论和结构方法。决策理论方法的基础是决策函数,利用它对模式向量进行分类识别,是以定时描述(如统计纹理)为基础的;结构方法的核心是将物体分解成了模式或模式基元,而不同的物体结构有不同的基元串(或称字符串),通过对未知物体利用给定的模式基元求出编码边界,得到字符串,再根据字符串判断它的属类,这是一种依赖于符号描述被测物体之间关系的方法。

20世纪70年代,波兰学者Pawlak Z和一些波兰的逻辑学家们一起从事关于信息系统逻辑特性的研究。粗糙集理论就是在这些研究的基础上产生的。1982年,Pawlak Z发表了经典论又Rough Sets,宣告了粗糙集理论的诞生。此后,粗糙集理论引起了许多科学家、逻辑学家和计算机研究人员的兴趣,他们在粗糙集的理论和应用万面作了大量的研究工作。



赞助本站

相关内容
AiLab云推荐
推荐内容
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港