#pragma hdrstop
#include <stdio.h>
#include <iostream.h>
const A=30.0;
const B=10.0;
const MAX=500; //最大训练次数
const COEF=0.0035; //网络的学习效率
const BCOEF=0.001;//网络的阀值调整效率
const ERROR=0.002 ; // 网络训练中的允许误差
const ACCURACY=0.0005;//网络要求精度
double sample[41][4]={{0,0,0,0},{5,1,4,19.020},{5,3,3,14.150},
{5,5,2,14.360},{5,3,3,14.150},{5,3,2,15.390},
{5,3,2,15.390},{5,5,1,19.680},{5,1,2,21.060},
{5,3,3,14.150},{5,5,4,12.680},{5,5,2,14.360},
{5,1,3,19.610},{5,3,4,13.650},{5,5,5,12.430},
{5,1,4,19.020},{5,1,4,19.020},{5,3,5,13.390},
{5,5,4,12.680},{5,1,3,19.610},{5,3,2,15.390},
{1,3,1,11.110},{1,5,2,6.521},{1,1,3,10.190},
{1,3,4,6.043},{1,5,5,5.242},{1,5,3,5.724},
{1,1,4,9.766},{1,3,5,5.870},{1,5,4,5.406},
{1,1,3,10.190},{1,1,5,9.545},{1,3,4,6.043},
{1,5,3,5.724},{1,1,2,11.250},{1,3,1,11.110},
{1,3,3,6.380},{1,5,2,6.521},{1,1,1,16.000},
{1,3,2,7.219},{1,5,3,5.724}};
double w[4][10][10],wc[4][10][10],b[4][10],bc[4][10];
double o[4][10],netin[4][10],d[4][10],differ;//单个样本的误差
double is; //全体样本均方差
int count,a;
void netout(int m, int n);//计算网络隐含层和输出层的输出
void calculd(int m,int n); //计算网络的反向传播误差
void calcalwc(int m,int n);//计算网络权值的调整量
void calcaulbc(int m,int n); //计算网络阀值的调整量
void changew(int m,int n); //调整网络权值
void changeb(int m,int n);//调整网络阀值
void clearwc(int m,int n);//清除网络权值变化量wc
void clearbc(int m,int n);//清除网络阀值变化量bc
void initialw(void);//初始化NN网络权值W
void initialb(void); //初始化NN网络阀值
void calculdiffer(void);//计算NN网络单个样本误差
void calculis(void);//计算NN网络全体样本误差
void trainNN(void);//训练NN网络
/*计算NN网络隐含层和输出层的输出 */
void netout(int m,int n)
{
int i,j,k;
//隐含层各节点的的输出
for (j=1,i=2;j<=m;j++) //m为隐含层节点个数
{
netin[i][j]=0.0;
for(k=1;k<=3;k++)//隐含层的每个节点均有三个输入变量
netin[i][j]=netin[i][j]+o[i-1][k]*w[i][k][j];
netin[i][j]=netin[i][j]-b[i][j];
o[i][j]=A/(1+exp(-netin[i][j]/B));
}
//输出层各节点的输出
for (j=1,i=3;j<=n;j++)
{
netin[i][j]=0.0;
for (k=1;k<=m;k++)
netin[i][j]=netin[i][j]+o[i-1][k]*w[i][k][j];
netin[i][j]=netin[i][j]-b[i][j];
o[i][j]=A/(1+exp(-netin[i][j]/B)) ;
}
}
/*计算NN网络的反向传播误差*/
void calculd(int m,int n)
{
int i,j,k;
double t;
a=count-1;
d[3][1]=(o[3][1]-sample[a][3])*(A/B)*exp(-netin[3][1]/B)/pow(1+exp(-netin[3][1]/B),2);
//隐含层的误差
for (j=1,i=2;j<=m;j++)
{
t=0.00;
for (k=1;k<=n;k++)
t=t+w[i+1][j][k]*d[i+1][k];
d[i][j]=t*(A/B)*exp(-netin[i][j]/B)/pow(1+exp(-netin[i][j]/B),2);
}
}
[本文共有 3 页,当前是第 1 页] <<上一页 下一页>>