展会信息港展会大全

教育机器人 科研机器人 学习机器人 积木机器人 双足机器人 自平
来源:互联网   发布日期:2011-09-07 12:51:48   浏览:12219次  

导读: 小型轮式机器人 履带式平台机器人 积木类机器人 双足行走机器人 自平衡机器人 Roombot实验机器人 RFID电子标签应用 机器人配件 RFID电子标签相关原理和知识园地 RFID电子标签原理介绍: RFID是什么?RFID是Radio Frequency Identification的缩写,即射频识别...

小型轮式机器人

履带式平台机器人

积木类机器人

双足行走机器人

自平衡机器人

Roombot实验机器人

RFID电子标签应用

 

机器人配件

RFID电子标签相关原理和知识园地














RFID电子标签原理介绍:

RFID是什么?RFID是Radio Frequency Identification的缩写,即射频识别,俗称电子标签。

  什么是RFID技术?
  RFID射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种恶劣环境。RFID技术可识别高速运动物体并可同时识别多个标签, 操作快捷方便。

  埃森哲实验室首席科学家弗格森认为RFID是一种突破性的技术:"第一,可以识别单个的非常具体的物体,而不是像条形码那样只能识别一类物体;第二,其采用无线电射频,可以透过外部材料读取数据,而条形码必须靠激光来读取信息;第三,可以同时对多个物体进行识读,而条形码只能一个一个地读。此外,储存的信息量也非常大。" 

  什么是RFID的基本组成部分?
  最基本的RFID系统由三部分组成:
? 标签(Tag):由耦合元件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象;
? 阅读器(Reader):读取(有时还可以写入)标签信息的设备,可设计为手持式或固定式;
? 天线(Antenna):在标签和读取器间传递射频信号。

  RFID技术的基本工作原理是什么?
  RFID技术的基本工作原理并不复杂:标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag,无源标签或被动标签),或者主动发送某一频率的信号(Active Tag,有源标签或主动标签);解读器读取信息并解码后,送至中央信息系统进行有关数据处理。  

  RFID技术的典型应用是什么?
   物流和供应管理
   生产制造和装配
   航空行李处理
   邮件/快运包裹处理
   文档追踪/图书馆管理
   动物身份标识
   运动计时
   门禁控制/电子门票
   道路自动收费
        机器人传感识别

系统组成和工作原理
最基本的RFID系统由三部分组成:
1. 标签(Tag,即射频卡):由耦合元件及芯片组成,标签含有内置天线,用于和射频天线间进行通信。
2. 阅读器:读取(在读写卡中还可以写入)标签信息的设备。
3. 天线:在标签和读取器间传递射频信号。
有些系统还通过阅读器的RS232或RS485接口与外部计算机(上位机主系统)连接,进行数据交换。
系统的基本工作流程是:阅读器通过发射天线发送一定频率的射频信号,当射频卡进入发射天线工作区域时产生感应电流,射频卡获得能量被激活;射频卡将自身编码等信息通过卡内置发送天线发送出去;系统接收天线接收到从射频卡发送来的载波信号,经天线调节器传送到阅读器,阅读器对接收的信号进行解调和解码然后送到后台主系统进行相关处理;主系统根据逻辑运算判断该卡的合法性,针对不同的设定做出相应的处理和控制,发出指令信号控制执行机构动作。
在耦合方式(电感-电磁)、通信流程(FDX、HDX、SEQ)、从射频卡到阅读器的数据传输方法(负载调制、反向散射、高次谐波)以及频率范围等方面,不同的非接触传输方法有根本的区别,但所有的阅读器在功能原理上,以及由此决定的设计构造上都很相似,所有阅读器均可简化为高频接口和控制单元两个基本模块。高频接口包含发送器和接收器,其功能包括:产生高频发射功率以启动射频卡并提供能量;对发射信号进行调制,用于将数据传送给射频卡;接收并解调来自射频卡的高频信号。不同射频识别系统的高频接口设计具有一些差异,电感耦合系统的高频接口原理图如图1所示。

阅读器的控制单元的功能包括:与应用系统软件进行通信,并执行应用系统软件发来的命令;控制与射频卡的通信过程(主-从原则);信号的编解码。对一些特殊的系统还有执行反碰撞算法,对射频卡与阅读器间要传送的数据进行加密和解密,以及进行射频卡和阅读器间的身份验证等附加功能。
射频识别系统的读写距离是一个很关键的参数。目前,长距离射频识别系统的价格还很贵,因此寻找提高其读写距离的方法很重要。影响射频卡读写距离的因素包括天线工作频率、阅读器的RF输出功率、阅读器的接收灵敏度、射频卡的功耗、天线及谐振电路的Q值、天线方向、阅读器和射频卡的耦合度,以及射频卡本身获得的能量及发送信息的能量等。大多数系统的读取距离和写入距离是不同的,写入距离大约是读取距离的40%~80%。

射频识别系统读写设备基本原理简介
射频标签读写设备是射频识别系统的两个重要组成部分(标签与读写器)之一。射频标签读写设备根据具体实现功能的特点也有一些其他较为流行的别称,如:阅读器(Reader),查询器(Interrogator),通信器(Communicator),扫描器(Scanner),读写器(Reader and Writer),编程器(Programmer),读出装置(Reading Device),便携式读出器(Portable Readout Device),AEI设备( Automatic Equipment Identification Device)等。
通常情况下,射频标签读写设备应根据射频标签的读写要求以及应用需求情况来设计。随着射频识别技术的发展,射频标签读写设备也形成了一些典型的系统实现模式,本章的重点也在于介绍这种读写器的实现原理。
从最基本的原理角度出度,射频标签读写设备一般均遵循如图所示的基本模式。

读写器即对应于射频标签读写设备,读写设备与射频标签之间必然通过空间信道实现读写器向射频标签发送命令,射频标签接收读写器的命令后做出必要的响应,由此实现射频识别。此外,在射频识别应用系统中,一般情况下,通过读写器实现的对射频标签数据的无接触收集或由读写器向射频标签中写入的标签信息均要回送的应用系统中或来自应用系统,这就形成了射频标签读写设备与应用系统程序之间的接口API(Application Program Interface)。一般情况下,要求读写器能够接收来自应用系统的命令,并且根据应用系统的命令或约定的协议作出相应的响应(回送收集到的标签数据等)。
读写器本身从电路实现角度来说,又可划分为两大部分,即:射频模块(射频通道)与基带模块。
射频模块实现的任务主要有两项,第一项是实现将读写器欲发往射频标签的命令调制(装载)到射频信号(也称为读写器/射频标签的射频工作频率)上,经由发射天线发送出去。发送出去的射频信号(可能包含有传向标签的命令信息)经过空间传送(照射)到射频标签上,射频标签对照射的其上的射频信号作出响应,形成返回读写器天线的反射回波信号。射频模块的第二项任务即是实现将射频标签反回到读写器的回波信号进行必要的加工处理,并从中解调(卸载)提取出射频标签回送的数据。
基带模块实现的任务也包含两项,第一项是将读写器智能单元(通常为计算机单元CPU或MPU)发出的命令加工(编码)实现为便于调制(装载)到射频信号上的编码调制信号。第二项任务即是实现对经过射频模块解调处理的标签回送数据信号进行必要的处理(包含解码),并将处理后的结果送入读写器智能单元。
一般情况下,读写器的智能单元也划归基带模块部分。智能单元从原理上来说,是读写器的控制核心,从实现角度来说,通常采用嵌入式MPU,并通过编制相应的MPU控制程序对实现收发信号实现智能处理以及与后终应用程序之间的接口API。
射频模块与基带模块的接口为调制(装载)/解调(卸载),在系统实现中,通常射频模块包括调制/解调部分,并且也包括解调之后对回波小信号的必要加工处理(如放大、整形)等。射频模块的收发分离是采用单天线系统时射频模块必须处理好的一个关键问题。

射频标签内存信息的写入方式
射频标签读写装置的基本功能是无接触读取射频标签中的数据信息。从功能角度来说,单纯实现无接触读取射频标签信息的设备称为阅读器、读出装置、扫描器等。单纯实现向射频标签内存中写入信息的设备称为编程器、写入器等。综合具有无接触读取与写入射频标签内存信息的设备称为读写器、通信器等。
射频标签信息的写入方式大致可以分为以下三种类型:
(1)射频标签在出厂时,即已将完整的标签信息写入标签。这种情况下,应用过程中,射频标签一般具有只读功能。只读标签信息的写入,在更多的情况下是在射频标签芯片的生产过程中即标签信息写入芯片,使得每一个射频标签拥有一个唯一的标识UID(如64Bits)。应用中,需再建立标签唯一UID与待识别物品的标识信息之间的对应关系(如车牌号)。只读标签信息的写入也有在应用之前,由专用的初始化设备将完整的标签信息写入。
(2)射频标签信息的写入采用有线接触方式实现,一般称这种标签信息写入装置为编程器。这种接触式的射频标签信息写入方式通常具有多次改写的能力。例如,目前在用的铁路货车电子标签信息的写入即为这种方式。标签在完成信息注入后,通常需将写入口密闭起来,以满足应用中对其防潮、防水、防污等要求。
(3)射频标签在出厂后,允许用户通过专用设备以无接触的方式向射频标签中写入数据信息。这种专用写入功能通常与射频标签读取功能结合在一起形成射频标签读写器。具有无线写入功能的射频标签通常也具有其唯一的不可改写的UID。这种功能的射频标签趋向于一种通用射频标签,应用中,可根据实际需要仅对其 UID进行识读或仅对指定的射频标签内存单元(一次读写的最小单位)进行读写。
应用中,还广泛存在着一次写入多次读出WORM(Write Once Read Many)的射频标签。这种WORM概念即有接触式改写的射频标签存在,也有无接触式改写的射频标签存在。这类WORM标签一般大量用在一次性使用的场合,如航空行李标签,特殊身份证件标签等。
无论是怎样的情况,对射频标签的写操作均应在一定的授权控制之下进行。否则,将失去射频标签标识物品的意义。

电子标签耦合类型
根据射频识别系统作用距离的远近情况,射频标签天线与读写器天线之间的耦合可分为三类。
射频识别系统中射频标签与读写器之间的作用距离是射频识别系统应用中的一个重要问题,通常情况下这种作用距离定义为射频标签与读写器之间能够可靠交换数据的距离。射频识别系统的作用距离是一项综合指标,与射频标签及读写器的配合情况密切相关。
根据射频识别系统作用距离的远近情况,射频标签天线与读写器天线之间的耦合可分为以下三类:(1)密耦合系统;(2)遥耦合系统;(3)远距离系统。

1、密耦合系统
密耦合系统的典型作用距离范围从0~1cm。实际应用中,通常需要将射频标签插入阅读器中或将其放置到读写器的天线的表面。密耦合系统利用的是射频标签与读写器天线无功近场区之间的电感耦合(闭合磁路)构成无接触的空间信息传输射频通道工作的。密耦合系统的工作频率一般局限在30MHz以下的任意频率。由于密耦合方式的电磁泄露很小、耦合获得的能量较大,因而可适合要求安全性较高,作用距离无要求的应用系统,如电子门锁等。

2、遥耦合系统
遥耦合系统的典型作用距离可以达到1m。遥耦合系统又可细分为近耦合系统(典型作用距离为15cm)与疏耦合系统(典型作用距离为1m)两类。遥耦合系统利用的是射频标签与读写器天线无功近场区之间的电感耦合(闭合磁路)构成无接触的空间信息传输射频通道工作的。遥耦合系统的典型工作频率为 13.56MHz,也有一些其他频率,如6.75MHz、27.125MHz等。遥耦合系统目前仍然是低成本射频识别系统的主流。

3、远距离系统
远距离系统的典型作用距离从1m到10m,个别的系统具有更远的作用距离。所有的远距离系统均是利用射频标签与读写器天线辐射远场区之间的电磁耦合(电磁波发射与反射)构成无接触的空间信息传输射频通道工作的。远距离系统的典型工作频率为:915MHz、2.45GHz、5.8GHz,此外,还有一些其他频率,如433MHz等。远距离系统的射频标签根据其中是否包含电池分为有无源射频标签(不含电池)和半无源射频标签(内含电池)。一般情况下,包含有电池的射频标签的作用距离较无电池的射频标签的作用距离要远一些。半无源射频标签中的电池并不是为射频标签和读写器之间的数据传输提供能量,而是只给射频标签芯片提供能量,为读写存贮数据服务。
远距离系统一般情况下均采用反射调制工作方式实现射频标签到读写器方向的数据传输。远距离系统一般具有典型的方向性,射频标签与读写器成本目前还处于较高的水平。从技术角度来说,满足以下特点的远距离系统是理想的射频识别系统:
(1)射频标签无源;
(2)射频标签可无线读写;
(3)射频标签与读写器支持多标签读写;
(4)适合应用于高速移动物体的识别(物体移动速度大于80km/h);
(5)远距离(读写距离大于5m~10m);
(6)低成本(可满足一次性使用要求);
现实的远距离系统一般均只能满足其中的几款要求。

射频识别系统模型
[摘要]射频识别系统工作过程中,空间传输通道中发生的过程可归结为三种事件模型,本文以此三种事件模型的描述来介绍射频识别系统的典型工作方式与工作流程。
射频标签(射频标签)与阅读器(读写器)之间通过两者的天线架起空间电磁波传输的通道。
细分射频标签与阅读器之间的电磁耦合,包含两种情况:即近距离的电感耦合与远距离的电磁耦合。在电感耦合方式中,阅读器一方的天线相当于变压器的初级线圈,射频标签一方的天线相当于变压器的次级,因而也称电感耦合方式为变压器方式。电感耦合方式的耦合中介是空间磁场,耦合磁场在阅读器线圈初级与射频标签线圈次级之间沟成闭合回路。电感耦合方式是低频近距离无接触射频识别系统的一般耦合原理。在电磁耦合方式中,阅读器的天线将阅读器产生的读写射频能量以电磁波的方式发送到定向的空间范围内,形成阅读器的有效阅读区域,位于阅读器有效阅读区域中的射频标签从阅读器天线发出的电磁场中提取工作电源,并通过射频标签的内部电路及标签天线将标签内存的数据信息传送到阅读器。电磁耦合与电感耦合的差别在于电磁耦合方式中阅读器将射频能量以电磁波的形式发送出去;在电感耦合方式中,阅读器将射频能量束缚在阅读器电感线圈的周围,通过交变闭合的线圈磁场,沟通阅读器线圈与射频标签线圈之间的射频通道,没有向空间辐射电磁能量。
射频识别系统工作过程中,空间传输通道中发生的过程可归结为三种事件模型:
(1)数据交换是目的;
(2)时序是数据交换的实现方式;
(3)能量是时序得以实现的基础。
下面以此三种事件模型的描述来介绍射频识别系统的典型工作方式与工作流程。

1、能量
阅读器向射频标签供给射频能量。对于无源射频标签来说,其工作所需的能量即由该射频能量中取得(一般由整流方法将射频能量转变为直流电源存在标签中电容器里);对于(半)有源射频标签来说,该射频能量的到来起到了唤醒标签转入工作状态的作用。完全有源射频标签一般不利用阅读器发出的射频能量,因而阅读器可以较小的能量发射取得较远的通信距离。移动通信中的基站与移动台之间的通信方式可归入该类模式。

2、时序
对于双向系统(阅读器向射频标签发送命令与数据、射频标签向阅读器返回所存贮的数据)来说,阅读器一般处于主动状态,即阅读器发出询问后,射频标签予以应答,称这种方式为阅读器先讲方式。另外一种情况是射频标签先讲方式,即射频标签满足工作条件后,首先自报家门,阅读器根据射频标签的自报家门,进行记录或进一步发出一些询问信息与射频标签构成一个完整对话达成阅读器对射频标签进行识别的目的。
射频识别系统应用中根据阅读器读写区域中允许出现单个射频标签或多个射频标签的不同,将射频识别系统称为单标签识别系统,或简称为射频识别系统,与多标签识别系统。在阅读器的阅读范围内有多个标签时,对于具有多标签识读功能的射频识别系统来说,一般情况下,阅读器处于主动状态,即阅读器先讲方式。阅读器通过发出一系列的隔离指令,使得读出范围内的多个射频标签逐一或逐批地被隔离(令其睡眠)出去,最后保留一个处于活动状态的标签与阅读器建立无冲撞的通信。通信结束后将当前活动标签置为第三态(可称其为休眠状态,只有通过重新上电,或特殊命令,才能解除休眠),进一步由阅读器对被隔离(睡眠)的标签发出唤醒命令唤醒一批(或全部)被隔离的标签,使其进入活动状态,再进一步隔离,选出一个标签通信。如此重复,阅读器可读出阅读区域内的多个射频标签信息,也可以实现对多个标签分别写入指定的数据。
实现多标签的读取,现实应用中也有采用标签先讲方式的应用。多标签读写问题是射频识别技术及应用中面临的一个较为复杂的问题,目前已有多种实用方法解决这一问题。解决方案的评价依据,一般考虑以下三个因素:
(1)多标签读取时待读标签的数目;
(2)单位时间内识别标签数目的概率分布;
(3)标签数目与单位时间内识读标签数目概率分布的联合评估。
理论分析表明,现有的方法都有一定的适用范围,需根据具体应用情况,结合上述三点因素对多标签读取方案给出合理评价,选出适合具体应用的方案。多标签读取方案涉及到射频标签与阅读器之间的协议配合,一旦选定,不易更改。
对于无多标签识读功能的射频识别系统来说,当阅读器的读写区域内同时出现多个标签时,由于多标签同时响应阅读器发出的询问指令,会造成阅读器接收信息相互冲突而无从读取标签信息,典型情况是一个标签信息也读不出来。

3、数据传输
射频识别系统所完成的功能可归结为数据获取的一个便利手段,因而国外也有将其归为自动收集数据ADC(Automatic Data Capture)技术范畴。射频识别系统中的数据交换包含两个方面的含义:
(1)从阅读器向射频标签方向的数据交换;
(2)从射频标签到阅读器方向的数据交换。
根据具体实现系统的不同,以及理解层面的不同,上述两个方面的含义会有不同的理解和解释,下面分别给予简单讨论。

3.1.从阅读器向射频标签方向的数据交换
从射频识别系统实现过程中的纯技术层面来说,如果将注意力放在射频标签中存贮信息的注入方式来说,阅读器向射频标签方向的数据交换可分为两种情况,即有线写入方式和无线写入方式。具体采用何种方式,需结合应用系统需求、代价,技术实现的难易程度等因素来定。
在有线写入方式下,阅读器的作用是向射频标签(中的存贮单元)写入数据信息。阅读器更多地被称为编程器。根据射频标签存贮单元及编程写入控制电路的设计情况,写入可以是一次性写入不能修改,也可以是允许有线多次改写的情形。另外一种写入情形是,在绝大多数通用射频识别系统应用中,每个射频标签要求具有唯一的标识。这种唯一的标识被称为射频标签的ID号,通常在标签出厂时已被固化在射频标签内,用户无法修改。ID号的固化过程可以在射频标签芯片生产过程中完成,也可以在射频标签应用指定后的初始化过程中完成。无论在何时完成,都是以有线(解触)方式实现ID号的写入。
对于声表面波SAW射频标签以及其它无芯片射频标签来说,一般均在标签制造过程中将标签ID号固化到标签记忆体中。
无线写入方式是射频识别系统中阅读器向射频标签方向数据交换的另外一种情况。根据射频识别系统实现技术方面的一些原因,一般情况下应尽可能地不要采用无线写入方式,尤其是在射频识别系统工作过程中。这种建议的主要原因有以下几点:
(1)具有无线写入功能的射频识别系统属于相对复杂的系统,能够采用简单系统解决应用问题即采用简单系统是一般的工程设计原理。其背后隐含着简单系统较复杂系统成本更低、可靠性更高、培训、维护成本更低。
(2)采用集成电路芯片的射频标签写入信息要求的能量比读出信息要求的能量要大得多,可以10倍的量级进行估算。这就造成射频标签无线写入过程花费的时间要比从中读取等量数据信息花费的时间要长许多。
(3)无线写入后一般均应对写入结果进行检验,检验的过程是一个读取过程,因而造成写入过程所需时间进一步增加。
(4)写入过程花费时间的增加非常不利于射频识别在鉴别高速移动物体方面的应用。这很容易理解,阅读器与射频标签之间经空间传输通道交换数据过程中,数据是一位一位排队串行进行的,其排队行进的速度由射频识别系统设计时决定。将射频标签看作数据信息的载体,数据信息总是以一定长度的数据位组成,因而读取或写入这些数据信息位要花费一定的时间。移动物体运动的速度越高,通过阅读区域所花费的时间就越少。当有无线写入要求时,必将限制物体的运动速度以保证有足够的时间用于写入信息。
(5)无线写入过程面临着射频标签信息的安全隐患。由于写入通道处于空间暴露状态,这给蓄谋攻击者提供了改写标签内容的机会。
另一方面,如果将注意力放在阅读器向射频标签是否发送命令方面,也可分为两种情况,即射频标签只接受能量激励和既接受能量激励也接受阅读器代码命令。
射频标签只接受能量激励的系统属于较简单的射频识别系统。这种射频识别系统一般不具备多标签识别能力。射频标签在其工作频带内的射频能量激励下,被唤醒或上电,同时将标签存贮的信息反射出来。目前在用的铁路车号识别系统即采用这种方式工作。
同时接受能量激励和阅读器代码命令的系统属于复杂射频识别系统。射频标签接受阅读器的指令无外乎是为了做两件事,即无线写入和多标签读取。

3.2.从射频标签向阅读器方向的数据交换
射频标签的工作使命即是实现由标签向阅读器方向的数据交换。其工作方式包括:
(1)射频标签收到阅读器发送的射频能量时,即被唤醒并向阅读器反射标签存贮的数据信息;
(2)射频标签受到阅读器发送的射频能量被激励后,根据接收到的阅读器的指令情况转入发送数据状态或"睡眠/休眠"状态。
从工作原理上来说,第一种工作方式属单向通信,第二种工作方式为半双工双向通信

在射频识别系统中的天线问题
[摘要]在RF装置中,工作频率增加到微波区域的时候,天线与标签芯片之间的匹配问题变得更加严峻。
天线的目标是传输最大的能量进出标签芯片。这需要仔细的设计天线和自由空间以及其相连的标签芯片的匹配。本文考虑的频带是435 MHz, 2.45 GHz 和 5.8 GHz,在零售商品中使用。天线必须:
足够的小以至于能够贴到需要的物品上;
有全向或半球覆盖的方向性;
提供最大可能的信号给标签的芯片;
无论物品什么方向,天线的极化都能与读卡机的询问信号相匹配;
具有鲁棒性;
非常便宜。

在选择天线的时候的主要考虑是:
天线的类型;
天线的阻抗:
在应用到物品上的RF的性能;
在有其他的物品围绕贴标签物品时的RF性能。

可能的选择
这里有两种使用方式:一)贴标签的物品被放在仓库中,有一个便携装置,可能是手持式,询问所有的物品,并且需要它们给予信息反馈信息;二)在仓库的门口安装读卡设配,询问并记录进出物品。还有一个主要的选择是有源标签还是无源标签[1],[2]。

可选的天线
在435 MHz, 2.45 GHz 和 5.8 GHz 频率是用的RFID系统中,可选的天线有几种,见下表,它们重点考虑了天线的尺寸。这样的小天线的增益是有限的,增益的大小取决于辐射模式的类型,全向的天线具有峰值增益0到2 dBi;方向性的天线的增益可以达到6 dBi。增益大小影响天线的作用距离。下表中的前三个种类的天线是线极化的,但是微带面天线可以使圆极化的,对数螺旋天线仅仅是圆极化的。由于RFID标签的方向性是不可控的,所以读卡机必须是圆极化的。一个圆极化的标签天线可以产生3 dB 以强的信号。

阻抗问题
为了最大功率传输,天线后的芯片的输入阻抗必须和天线的输出阻抗匹配。几十年来,设计天线与50 或 70 欧姆的阻抗匹配,但是可能设计天线具有其他的特性阻抗。例如,一个缝隙天线可以设计具有几百欧姆的阻抗。一个折叠偶极子的阻抗可以是一做个标准半波偶极子阻抗的20倍。印刷贴片天线的引出点能够提供一个很宽范围的阻抗(通常是 40 到 100欧姆)。选择天线的类型,以至于它的阻抗能够和标签芯片的输入阻抗匹配是十分关键的。另一个问题是其他的与天线接近的物体可以降低天线的返回损耗。对于全向天线,例如双偶极子天线,这个影响是显著的。改变双偶极子天线和一听番茄酱的间距做了一些实际测量,显示了一些变化,见图4和图5。其他的物体也有相似的影响。此外是物体的介电常数,而不是金属,改变了谐振频率。一塑料瓶子水降低了最小返回损耗频率16%。当物体与天线的距离小于62.5 mm的时候,返回损耗将导致一个3.0 dB的插入损耗,而天线的自由空间插入损耗才0.2 dB。可以设计天线使它与接近物体的情况相匹配,但是天线的行为对于不同的物体和不同的物体距离而不同。对于全向天线是不可行的,所以设计方向性强的天线,它们不受这个问题的影响。

辐射模式
在一个无反射的环境中测试了天线的模式,包括了各种需要贴标签的物体,在使用全向天线的时候性能严重下降。圆柱金属听引起的性能下降是最严重的,在它与天线距离50mm的时候,反回的信号下降大于20 dB (见图6)。天线与物体的中心距离分开到100—150mm的时候,反回信号下降约10 到12 dB。在与天线距离100mm的时候,测量了几瓶水(塑料和玻璃),见图7,反回信号降低大于10 dB。在蜡纸盒的液体,甚至苹果上做试验得到了类似的结果。

局部结构的影响
在使用手持的仪器的时候,大量的其他临近物体的使读卡机天线和标签天线的辐射模式严重失真。这可以对于2.45 GHz的工作频率计算,假设一个代表性的几何形状,见图8,9,10,和自由空间相比,显示返回信号降低了10dB,在双天线同时使用的时候,比预料的模式下降的更多。图11和图12是在一个天线前的一个横截平面的接收信号等高线图,显示了严重的失真。在仓库的使用环境下,一个物品盒子具有一个标签会有问题,几个标签贴在一个盒子上以确保所有时候都有一个标签是可以看见的。便携系统的使用有几个天线的问题。每个盒子两个天线足够适合门禁装置探测,这样局部结构的影响变得不再重要,因为门禁装置的读卡机天线被固定在仓库的出入,并且直接指向贴标签的物体。

距离
RFID 天线的增益和是否使用有源的标签芯片将影响系统的使用距离。乐观的考虑,在电磁场的辐射强度符合UK的相关标准时,2.45 GHz 的无源情况下,全波整流,驱动电压不大于3伏,优化的RFID天线阻抗环境(阻抗 200 或 300 欧姆),使用距离大约是1米[3]。如果使用WHO限制[4]则更适合于全球范围的使用,但是作用距离下降了一半。这些限制了读卡机到标签的电磁场功率。作用距离随着频率升高而下降。如果使用有源芯片作用距离可以达到5到10米。

总结
全向天线应该避免在标签中使用,然而是可以使用方向性天线,它具有更少的辐射模式和返回损耗的干扰。天线类型的选择必须使它的阻抗与自由空间和ASIC匹配。在一个仓库中使用天线好像是不可行的,除非使用有源标签,但是在任何情况下,仓库内的天线辐射模式将严重失真。一个门禁系统的使用将是好的选择,可以使用短作用距离的无源标签。当然门禁系统比手持的仪器昂贵,但是手持仪器工作人员需要使用它到仓库搜寻物品,人员费用同样昂贵。在门禁系统中,每一个物品盒子,仅需要2个而不是4个或6个RFID标签。

射频识别工作频段
射频识别系统工作频率的选择要顾及其他无线电服务,不能对其服务造成干扰和影响。

因为射频识别系统产生并辐射电磁波,所以这些系统被合理地归为无线电设备一类,射频识别系统工作时不能对其他无线电服务造成干扰或削弱。特别是应保证射频识别系统不会干扰附近的无线电广播和电视广播、移动的无线电服务(警察、安全服务、工商业)、航运和航空用无线电服务和移动电话等。
射频识别系统工作频率的选择要顾及其他无线电服务,不能对其服务造成干扰和影响。因而通常只能使用特别为工业、科学和医疗(ISM — Industrial-Scientific-Medical)应用而保留的频率范围。这些频率范围在世界范围内是统一划分的。
除了ISM频率外,在135kHz以下的整个频率范围也是可用的(在北美洲和南美洲以及在日本:<400kHz),因为这里可以用较大的磁场强度工作,特别适用于电感耦合的射频识别系统。
对射频识别系统来说,最主要的频率是0~135kHz,以及ISM频率6.78MHz、13.56MHz、27.125MHz、40.68MHz、 433.92MHz 、869.0MHz、915.0MHz(在欧洲不使用)、2.45GMHz、5.8GHz以及24.125GHz。典型的射频标签(射频识别系统)工作频率如图所示。




 

赞助本站

AiLab云推荐
展开

热门栏目HotCates

Copyright © 2010-2025 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港