展会信息港展会大全

遗传算法(Genetic Algorithms)简介
来源:互联网   发布日期:2011-09-06 13:36:33   浏览:9532次  

导读:读书社区 - 超星网 遗传算法(Genetic Algorithms)简介一、遗传算法的历史和现状遗传算法(Genetic Algorithms)是基于生物进化理论的原理发展起来的一种广为应...

遗传算法(Genetic Algorithms)简介

一、遗传算法的历史和现状
遗传算法(Genetic Algorithms)是基于生物进化理论的原理发展起来的一种广为应用的、高效的随机搜索与优化的方法。其主要特点是群体搜索策略和群体中个体之间的信息交换,搜索不依赖于梯度信息。它是在70年代初期由美国密执根(Michigan)大学的霍兰(Holland)教授发展起来的。1975年霍兰教授发表了第一本比较系统论述遗传算法的专著《自然系统与人工系统中的适应性》(《Adaptation in Natural and Artificial Systems》)。遗传算法最初被研究的出发点不是为专门解决最优化问题而设计的,它与进化策略、进化规划共同构成了进化算法的主要框架,都是为当时人工智能的发展服务的。迄今为止,遗传算法是进化算法中最广为人知的算法。
近几年来,遗传算法主要在复杂优化问题求解和工业工程领域应用,取得了一些令人信服的结果,所以引起了很多人的关注,而且在发展过程中,进化策略、进化规划和遗传算法之间差异越来越小。遗传算法成功的应用包括:作业调度与排序、可靠性设计、车辆路径选择与调度、成组技术、设备布置与分配、交通问题等等。
    (一)遗传算法的特点
遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。搜索算法的共同特征为:(1)首先组成一组候选解;(2)依据某些适应性条件测算这些候选解的适应度;(3)根据适应度保留某些候选解,放弃其他候选解;(4)对保留的候选解进行某些操作,生成新的候选解。在遗传算法中,上述几个特征以一种特殊的方式组合在一起:基于染色体群的并行搜索,带有猜测性质的选择操作、交换操作和突变操作。这种特殊的组合方式将遗传算法与其它搜索算法区别开来。
遗传算法还具有以下几方面的特点:
(1)遗传算法的处理对象不是参数本身,而是对参数集进行了编码的个体。此操作使得遗传算法可直接对结构对象进行操作。
(2)许多传统搜索算法都是单点搜索算法,容易陷入局部的最优解。遗传算法同时处理群体中的多个个体,即对搜索空间中的多个解进行评估,减少了陷入局部最优解的风险,同时算法本身易于实现并行化。
(3)遗传算法基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作。适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。这一特点使得遗传算法的应用范围大大扩展。
(4)遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导他的搜索方向。
(5)具有自组织、自适应和自学习性。遗传算法利用进化过程获得的信息自行组织搜索,时硬度大的个体具有较高的生存概率,并获得更适应环境的基因结构。
    (二)遗传算法的运用领域

赞助本站

AiLab云推荐
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港