展会信息港展会大全

基于模糊理的图像分割算法研究
来源:互联网   发布日期:2011-08-30 20:12:25   浏览:5458次  

导读:图像分割边缘检测模糊理论遗传算法Matlab分割的目的是将图像划分为不同区域。图像分割算法一般是基于亮度值的两个基本特性之一:不...

图像分割边缘检测模糊理论遗传算法Matlab

分割的目的是将图像划分为不同区域。图像分割算法一般是基于亮度值的两个基本特性之一:不连续性和相似性。第一类性质的已用途径是基于亮度的不连续变化分割图像,比如图像的边缘。第二类的主要应用途径是依据事先制订的准则将图像分割为相似的区域。门限处理、区域生长、区域分离和聚合都是这类方法的实例。遗传算法具有简单、鲁棒性好和本质并行的突出优点。其在应用领域取得的巨大成功,引起了广大学者的关注。在图像分割领域,遗传算法常用来帮助确定分割阈值。

第一章绪论1.1图像分割综述

图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。这里所说的特性可以是灰度、颜色、纹理等,而目标可以对应单个区域,也可以对应多个区域。图像分割是数字图像处理中的一项关键技术,它使得其后的图像分析,识别等高级处理阶段所要处理的数据量大大减少,同时又保留有关图像结构特征的。而且,在数字图像处理工程中,一方面,图像分割是目标表达的基础,对特征测量有重要的影响;另一方面,图像分割是自动目标识别的关键步骤,图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式,分割中出现的误差会传播至高层次处理阶段,因此分割的精确程度是至关重要的。只有通过细致精细的图像分割,才能使得更高层的图像分析和理解成为可能。因此,图像分割是由图像处理进到图像分析的关键步骤,在图像工程中占据重要的位置。

1.2图像分割的研究意义与发展现状

作为计算机视觉和图像处理中的难点和热点之一,图像分割的研究受到了研究工的高度重视,对图像分割进行了深入、广泛的研究。作为一种重要的图像技术,图像分割在不同领域中有时也用其它名称:如目标轮廓技术,阈值化技术,图像区分或求差技术,目标检测技术,目标识别技术,目标跟踪技术等,但这些技术本身或其核心实际上也就是图像分割技术。图像分割作为图像处理、分析的一项基本内容,其应用非常广泛,几乎出现在有关图像处理的所有领域,并涉及各种类型的图像。在工业自动化、在线产品检验、生产程控、文件图像处理、遥感图像、保安监视、以及军事、体育、农业等行业和工程中,图像分割都有着广泛的应用。例如:在遥感图像中,合成孔径雷达图像中目标的分割、遥感云图中不同云系和背景分布的分割等;在医学应用中,脑部MR图像分割成灰质、白质、脑脊髓等脑组织和其它脑组织区域等;在交通图像分析中,把车辆目标从背景中分割出来等;在面向对象的图像压缩和基于内容的图像检索中将图像分割成不同的对象区域等。在各种图像应用中,只要需对图像目标进行提取,测量等都离不开图像分割。

自20世纪70年代至今,已提出上千种各种类型的分割算法。如:门限法、匹配法、区域生长法、分裂-合并法、水线法、马尔可夫随机场模型法、多尺度法、小波分析法、数学形态学等。随着新理论、新技术的发展,一些新的图像分割方法也随之出现,但这些分割算法都是针对某一类型图像、某一具体的应用问题而提出的,并没有一种适合所有图像的通用分割算法。通用方法和策略仍面临着巨大的困难。另外,还没有制定出选择适用分割算法的标准,这给图像分割技术的应用带来许多实际问题。

1.3本所作的工作

据此,在本中只对常用的、并在实践中行之有效的边缘检测方法和阈值分割方法进行深入的了解,并对阈值分割方法中的灰度直方图双峰法和基于遗传算法的最大类间方差法进行详细的讨论,同时用Matlab对上述两种方法进行验证并给出结果。

1.4本的论述内容

1.对本文所采用的试验测试工具Matlab进行简介。

2.简介数字图像的基础问题。概述了数字图像的基本概念和特点,简介了各种图像格式的特点和应用,为全文的讨论作一铺垫。

3.详细讨论了图像分割中的基于阈值的图像分割方法,给出了直方双峰法的算法和验证结果,并简要介绍了普通最大类间方差法的算法过程。

4.对遗传算法理论进行简介。详细讨论了遗传算法的定义和标准遗传算法的流程和要素。为应用此方法对最大阈值进行迭代寻优打下基础。

6.应用遗传算法改进了最大类间方差法。给出了整个遗传操作的使用函数与具体进程,并对实例图片进行处理,得到处理结果并得到迭代最优阈值M。

第二章Matlab简介2.1MATLAB的概况和产生背景2.1.1MATLAB的概况MATLAB是矩阵实验室之意。除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多.

当前流行的MATLAB包括拥有数百个内部函数的主包和三十几种工具包.工具包又可以分为功能性工具包和学科工具包.功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能.学科工具包是专业性比较强的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类.开放性使MATLAB广受用户欢迎.除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改或加入自己编写程序构造新的专用工具包.

2.1.2MATLAB产生的历史背景在70年代中期,CleveMoler博士和其同事在美国国家科学基金的资助下开发了调用EISPACK和LINPACK的FORTRAN子程序库.EISPACK是特征值求解的FOETRAN程序库,LINPACK是解线性方程的程序库.在当时,这两个程序库代表矩阵运算的最高水平.到70年代后期,身为美国NewMexico大学计算机系系主任的CleveMoler,在给学生讲授线性代数课程时,想教学生使用EISPACK和LINPACK程序库,但他发现学生用FORTRAN编写接口程序很费时间,于是他开始自己动手,利用业余时间为学生编写EISPACK和LINPACK的接口程序.CleveMoler给这个接口程序取名为MATLAB,该名为矩阵和实验室两个英文单词的前三个字母的组合.在以后的数年里,MATLAB在多所大学里作为教学辅助软件使用,并作为面向大众的免费软件广为流传。1983年春天,CleveMoler到Standford大学讲学,MATLAB深深地吸引了工程师JohnLittle.JohnLittle敏锐地觉察到MATLAB在工程领域的广阔前景.同年,他和CleveMoler,SteveBangert一起,用C语言开发了第二代专业版.这一代的MATLAB语言同时具备了数值计算和数据图示化的功能.1984年,CleveMoler和JohnLittle成立了MathWorks公司,正式把MATLAB推向市场,并继续进行MATLAB的研究和开发.

在当今30多个数学类科技应用软件中,就软件数学处理的原始内核而言,可分为两大类.一类是数值计算型软件,如MATLAB,Xmath,Gauss等,这类软件长于数值计算,对处理大批数据效率高;另一类是数学分析型软件,Mathematica,Maple等,这类软件以符号计算见长,能给出解析解和任意精确解,其缺点是处理大量数据时效率较低.MathWorks公司顺应多功能需求之潮流,在其卓越数值计算和图示能力的基础上,又率先在专业水平上开拓了其符号计算,文字处理,可视化建模和实时控制能力,开发了适合多学科,多部门要求的新一代科技应用软件MATLAB.经过多年的国际竞争,MATLAB以经占据了数值软件市场的主导地位.

在MATLAB进入市场前,国际上的许多软件包都是直接以FORTRANC语言等编程语言开发的。这种软件的缺点是使用面窄,接口简陋,程序结构不开放以及没有标准的基库,很难适应各学科的最新发展,因而很难推广。MATLAB的出现,为各国科学家开发学科软件提供了新的基础。在MATLAB问世不久的80年代中期,原先控制领域里的一些软件包纷纷被淘汰或在MATLAB上重建。

时至经过MathWorks公司的不断完善,MATLAB已经发展成为适合多学科,多种工作平台的功能强大大大型软件。在国外,MATLAB已经经受了多年考验。在欧美等高校,MATLAB已经成为线性代数,自动控制理论,数理统计,数字信号处理,时间序列分析,动态系统仿真等高级课程的基本教学工具;成为攻读学位的大学生,硕士生,博士生必须掌握的基本技能。在设计研究单位和工业部门,MATLAB被广泛用于科学研究和解决各种具体问题。在国内,特别是工程界,MATLAB一定会盛行起来。可以说,无论你从事工程方面的哪个学科,都能在MATLAB里找到合适的功能。

2.2MATLAB的语言特点一种语言之所以能如此迅速地普及,显示出如此旺盛的生命力,是由于它有着不同于其他语言的特点,正如同FORTRAN和C等高级语言使人们摆脱了需要直接对计算机硬件资源进行操作一样,被称作为第四代计算机语言的MATLAB,利用其丰富的函数资源,使编程人员从繁琐的程序代码中解放出来。MATLAB最突出的特点就是简洁。MATLAB用更直观的,符合人们思维习惯的代码,代替了C和FORTRAN语言的冗长代码。MATLAB给用户带来的是最直观,最简洁的程序开发环境。以下简单介绍一下MATLAB的主要特点。

1.语言简洁紧凑,使用方便灵活,库函数极其丰富。MATLAB程序书写形式自由,利用起丰富的库函数避开繁杂的子程序编程任务,压缩了一切不必要的编程工作。由于库函数都由本领域的专家编写,用户不必担心函数的可靠性。可以说,用MATLAB进行科技开发是站在专家的肩膀上。更为难能可贵的是,MATLAB甚至具有一定的智能水平,所以用户根本不用怀疑MATLAB的准确性。

2.运算符丰富。由于MATLAB是用C语言编写的,MATLAB提供了和C语言几乎一样多的运算符,灵活使用MATLAB的运算符将使程序变得极为简短。

赞助本站

AiLab云推荐
展开

热门栏目HotCates

Copyright © 2010-2025 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港