3小波神经网络的应用进展分析
3,1小波分析理论与神经网络理论结合的必要性
在神经网络理论应用于模拟电路故障诊断的过程中,神经网路对于隐层神经元节点数的确定、各种参数的初始化和神经网络结构的构造等缺乏更有效的理论性指导方法,而这些都将直接影响神经网络的实际应用效果。小波分析在时域和频域同时具有良好的局部化特性,而神经网络则具有自学习、并行处理、自适应、容错性和推广能力二因此把小波分析和神经网络两者的优点结合起来应用于故障诊断是客观实际的需要。
目前小波分析与神经网络的结合有两种形式,一种是先利用小波变换对信号进行预处理,提取信号的特征向量作为神经网络的输人,另一种则是采用小波函数和尺度函数形成神经元,达到小波分析和神经网络的直接融合第一种结合方式是小波神经网络的松散型结合,第二种结合方式是小波神经网络的紧致型结合。
3.2小波分析理论与神经网络理论的结合形式
小波与神经网络的松散型结合,即:用小波分析或小波包分析作为神经网络的前置处理手段,为神经网络提供输人特征向鱼具体来说就是利用小波分析或小波包分析,把信号分解到相互独立的频带之内,各频带内的能童值形成一个向觉,该向童对不同的故障对应不同的值,从而可作为神经网络的输入特征向量一旦确定神经网络的输入特征向童,再根据经验确定采用哪种神经网络及隐层数和隐层单元数等,就可以利用试验样本对神经网络进行训练,调整权值,从而建立起所需的小波神经网络模型。
小波与神经网络的紧致型结合,即:用小波函数和尺度函数形成神经元,达到小波分析和神经网络的直接融合,称为狭义上的小波神经网络,这也是常说的小波神经网络。它是以小波函数或尺度函数作为激励函数,其作用机理和采用Sigmoid函数的多层感知器基本相同。故障诊断的实质是要实现症状空间到故障空间的映射,这种映射也可以用函数逼近来表示。小波神经网络的形成也可以从函数逼近的角度加以说明。常见的小波神经网络有:利用尺度函数作为神经网络中神经元激励函数的正交基小波网络、自适应小波神经网络、多分辨率小波网络、区间小波网络等。
3.3小波分析理论与神经网络理论结合的优点
小波神经网络具有以下优点:一是可以避免M LY等神经网络结构设计的育目性;二是具有逼近能力强、网络学习收敛速度快、参数的选取有理论指导、有效避免局部最小值问题等优点。
在模拟电路故障诊断领域,小波神经网络还是一个崭新的、很有前途的应用研究方向。随着小波分析理论和神经网络理论的不断发展,小波神经网络应用于模拟电路故障诊断领域将日益成熟。
4结语
小波分析理论和神经网络理论在模拟电路故障诊断领域具有广阔的应用前景。小波神经理论的应用将进一步推动模拟电路故障诊断理论和方法的发展,使其更趋完善和更具广泛适用性,为实现复杂的大规模电路的故障诊断提供更为有效、更具实用价值的方法,是今后模拟电路故障诊断的发展方向。
浅谈小波神经网络应用于模拟电路故障诊断的进展
来源:互联网 发布日期:2011-08-29 22:36:10 浏览:4847次
导读:分析了模拟电路故障诊断的重要性和目前存在的困难,对基于小渡分析理论和神经网络理论的模拟电路故障诊断方法进行了综述.指出了小波神经网络应用于模拟电路故障...
相关内容
AiLab云推荐

最新资讯
本月热点
热门排行
-
我国研究人员设计出高效神经调控芯片,推动脑机接口研发进程
阅读量:3699
-
芯片大厂恩智浦边缘业务提速融合人工智能
阅读量:3529
-
华为脑机接口芯片新专利曝光,是其第二项脑机接口专利
阅读量:3448
-
小米 Vela 系统代码即将开源,开启先锋体验计划
阅读量:3170
-
200亿新风口突然爆火,“AI 智能体硬件”概念会否产生泡沫?|钛媒体AGI
阅读量:3100
-
2035年全球Chiplet芯片市场规模将达到4110亿美元
阅读量:3068