基于模拟退火法的矿用车辆卸料系统协同优化
xuebao.nuc.edu.cn
摘要:为了避免常规优化方法只考虑单个系统内部设计变量 的片面性, 对矿用汽车卸料系统总体设计中应用协同优化的可行性进行了研究. 阐述了协同 优化的基本框架, 分析了标准协同优化自身存在的缺陷; 提出了在协同优化的系统级优化 中采用模拟退火法作为搜索策略. 选择矿用汽车总体设计中的货箱、 车架和卸料机构三个 总成的协同设计作为工程实例, 建立其协同优化数学模型, 通过 iSIGHT 多学科设计优化软 件集成各学科分析工具并进行优化求解. 结果表明, 采用模拟退火法作为设计空间搜索策略 , 系统级的一致性约束条件能收敛到零, 提高了其搜索全局最优值的鲁棒性.
关键词:协同优化; 矿用汽车; 总体设计; 模拟退火法
中图分类号:U462.2文献标识码: A
Collaborative Optimization of Mining Truck’s Hoist System Based on Simulated Annealing Algorithm
CHENG Lin, ZHANG Wen?ming
(Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083, China)
Abstract: To avoid the disadvantages of common optimization method s which only take inner design parameters into account, the study investigated w hether the collaborative optimization (CO) can be applied to overall design of a mining truck’s hoist system. The framework of CO is introduced and its inheren t disadvantages are analyzed. A collaborative optimization method in which the s imulated annealing algorithm is used as the search strategy for the system?leve l optimization is presented. Taking mining truck’s body, frame and hoist mechan ism collaborative design as an industrial instance, the study created its CO mat hematic model and obtained optimal solutions by integrating all disciplinary ana lysis tools into the iSIGHT software specialized in multidisciplinary design opt imization. The result shows that the convergent value of the system?level consi stency constraint is zero and the CO method can search global optimal resolution robustly when the simulated annealing algorithm is used as the search strategy of the designed space.
Key words: collaborative optimization; mining truck; overall desig n; simulated annealing algorithm
参考文献:
[1]Kroo I M, Altus S, Braun R. Multidisciplinary optimization methods f or aircraft preliminary design[J]. American Institute of Aeronautics and Astro nautics Journal, 1994: 70?84.
[2]余雄庆, 薛飞, 穆雪峰, 等. 用遗传算法提高协同优化方法的可靠性[J]. 中国机械工程, 2003, 14(21): 1808?1811.
Yu Xiongqing, Xue Fei, Mu Xuefeng, et al. Improving robustness of the collaborat ive optimization using genetic algorithms[J]. China Mechanical Engineering, 20