展会信息港展会大全

印刷体汉字识别系统(续)
来源:互联网   发布日期:2011-08-18 13:48:59   浏览:6607次  

导读:印刷体汉字识别系统(续)_wayright_新浪博客,wayright,...

三、印刷体文字识别的研究历程

印刷体文字的识别可以说很早就成为人们的梦想,早在1929年,Taushek就在德国获得了一项有关OCR的专利。欧美国家为了将浩如烟海、与日俱增的大量报刊杂志、文件资料和单据报表等文字材料输入计算机进行信息处理,从50年代就开始了西文OCR(Optical Character Recognition,光学字符识别)技术的研究,以便代替人工键盘输入。

印刷体汉字的识别最早可以追溯到60年代。1966年,IBM公司的Casey和Nagy发表了第一篇关于印刷体汉字识别的论文,在这篇论文中他们利用简单的模板匹配法识别了1,000个印刷体汉字。70年代以来,日本学者做了许多工作,其中有代表性的系统有1977年东芝综合研究所研制的可以识别2000汉字的单体印刷汉字识别系统;80年代初期,日本武藏野电气研究所研制的可以识别2300个多体汉字的印刷体汉字识别系统,代表了当时汉字识别的最高水平。此外,日本的三洋、松下、理光和富士等公司也有其研制的印刷汉字识别系统。这些系统在方法上,大都采用基于K-L数字变换的匹配方案,使用了大量专用硬件,其设备有的相当于小型机甚至大型机,价格极其昂贵,没有得到广泛应用。

我国对印刷汉字识别的研究始于70年代末、80年代初,大致可以分为三大阶段:

(1) 第一阶段从70年代末期到80年代末期,主要是算法和方案探索。

(2) 第二阶段是90年代初期,中文OCR由实验室走向市场,初步实用。

(3) 第三阶段也就是目前,主要是印刷汉字识别技术和系统性能的提高,包括汉英双语混排识别率的提高和稳健性的增强。

同国外相比,我国的印刷体汉字识别研究起步较晚。但由于我国政府对汉字自动识别输入的研究从80年代开始给予了充分的重视和支持,经过科研人员十多年的辛勤努力,印刷体汉字识别技术的发展和应用,有了长足进步:从简单的单体识别发展到多种字体混排的多体识别,从中文印刷材料的识别发展到中英混排印刷材料的双语识别。各个系统可以支持简、繁体汉字的识别,解决了多体多字号混排文本的识别问题,对于简单的版面可以进行有效的定量分析,同时汉字识别率已达到了98%以上。

清华大学电子工程系、中国科学院计算所智能中心、北京信息工程学院、沈阳自动化研究所等单位分别研制开发出实用化的印刷体汉字识别系统。尤其是由清华大学电子工程系研制的清华TH-OCR产品,始终处于技术与产品发展的最前沿,并占据着最大的市场份额,代表着中文OCR技术发展的潮流。

这一成就,是对中华文化宝贵遗产的继承和发扬,在世界电脑发展史上,必将留下光辉的一页,同时,这也是造福子孙千秋万代的大事。国家高技术研究发展“863”计划、国家重点科技攻关计划、国家自然科学基金和军事基础研究基金都对这一研究课题予以极大的重视和大力的支持。

四、印刷体文字识别研究方法简介

识别方法是整个系统的核心。用于汉字识别的模式识别方法可以大致分为结构模式识别、统计模式识别及两者的结合。下面分别进行介绍。

4.1 结构模式识别

汉字是一种特殊的模式,其结构虽然比较复杂,但具有相当严格的规律性。换言之,汉字图形含有丰富的结构信息,可以设法提取含有这种信息的结构特征及其组字规律,作为识别汉字的依据,这就是结构模式识别。

结构模式识别是早期汉字识别研究的主要方法。其主要出发点是汉字的组成结构。从汉字的构成上讲,汉字是由笔划(点横竖撇捺等)、偏旁部首构成的;还可以认为汉字是由更小的结构基元构成的。由这些结构基元及其相互关系完全可以精确地对汉字加以描述,就像一篇文章由单字、词、短语和句子按语法规律所组成一样。所以这种方法也叫句法模式识别。识别时,利用上述结构信息及句法分析的方法进行识别,类似一个逻辑推理器。

用这种方法来描述汉字字形结构在理论上是比较恰当的,其主要优点在于对字体变化的适应性强,区分相似字能力强;但是,在实际应用中,面临的主要问题是抗干扰能力差,因为在实际得到的文本图象中存在着各种干扰,如倾斜,扭曲,断裂,粘连,纸张上的污点,对比度差等等。这些因素直接影响到结构基元的提取,假如结构基元不能准确地得到,后面的推理过程就成了无源之水。此外结构模式识别的描述比较复杂,匹配过程的复杂度因而也较高。所以在印刷体汉字识别领域中,纯结构模式识别方法已经逐渐衰落,句法识别的方法正日益受到挑战。

4.2 统计模式识别

统计决策论发展较早,理论也较成熟。其要点是提取待识别模式的的一组统计特征,然后按照一定准则所确定的决策函数进行分类判决。

汉字的统计模式识别是将字符点阵看作一个整体,其所用的特征是从这个整体上经过大量的统计而得到的。统计特征的

赞助本站

相关内容
AiLab云推荐
推荐内容
展开

热门栏目HotCates

Copyright © 2010-2024 AiLab Team. 人工智能实验室 版权所有    关于我们 | 联系我们 | 广告服务 | 公司动态 | 免责声明 | 隐私条款 | 工作机会 | 展会港